Discrete Mathematics 339 (2016) 632-645

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A generalization of weight polynomials to matroids @ CroseMark

Trygve Johnsen, Jan Roksvold *, Hugues Verdure
Department of Mathematics and Statistics, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromse, Norway

ARTICLE INFO ABSTRACT
Article history: Generalizing polynomials previously studied in the context of linear codes, we define
Received 2 January 2014 weight polynomials and an enumerator for a matroid M. Our main result is that these

Received in revised form 1 October 2015
Accepted 4 October 2015
Available online 11 November 2015

polynomials are determined by Betti numbers associated with Ny-graded minimal free
resolutions of the Stanley-Reisner ideals of M and so-called elongations of M. Generalizing
Greene’s theorem from coding theory, we show that the enumerator of a matroid is
equivalent to its Tutte polynomial.
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1. Introduction

For a linear [n, k]-code C over Fy, let Ac j denote the number of words of weight j in C. The Hamming weight enumerator

n
WeX,Y) =) A X"y
j=0

has important applications in the theory of error-correcting codes, where it amongst other things determines the probability
of having an undetected error (see [12, Proposition 1.12]).
Let M(H) denote the vector matroid associated to a parity-check matrix H of C. The connection

_ X X+(@—-1Y

WeX,Y) = (X — V)" *y*e - — 1

XY = X ="M e (T (1)

between the Hamming weight enumerator of an Fy-code and the specialization of its associated Tutte polynomial on the

hyperbola (x — 1)(y — 1) = g was first established in Greene’s paper [7], and we shall therefore refer to Eq. (1) as Greene’s
theorem.

For Q a power of g, the set of all Fg-linear combinations of words of C is itself a linear code. This code is commonly
referred to as the extension of C to Fq, and is denoted by C ®g, Fo. In [12], it is found that the number Ac ;(Q) of words
of weight j in C ®y, Fq can be expressed in terms of the initial code C, as a polynomial in Q. This leads the authors to the
definition of an extended weight enumerator W (X, Y, Q) for C, with the desired property that

WeX, Y, Q) = We gy, 5, (X, V).
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The polynomial W¢(X, Y, Q) is then, in turn, shown to be equivalent to the Tutte polynomial of M (H)—thereby extending
Greene’s theorem.

Our primary objective in this article is to demonstrate that the polynomial A¢ j(Q) is determined by the Betti numbers
associated to Ng-graded minimal free resolutions of the Stanley—Reisner ideals of M (H) and its so-called elongations. This is
intended to serve as one brick in the bridge being built between commutative combinatorial algebra and the theory of linear
codes. The result can also be seen as a continuation of the work done in [9], where it is demonstrated that the Betti numbers
associated to an Ny-graded minimal free resolution of the Stanley-Reisner ideal of M(H) determine the higher Hamming
weight hierarchy of C.

It seemed natural to begin the pursuit of the above-stated objective by generalizing the polynomial Ac;(Q) to a
polynomial Py ;(Z) defined for all matroids, not only those stemming from a linear code, but of course with the property
that Ac j;(Q) = Puw),j(Q). Having defined such a polynomial Py j(Z), it is equally natural to define and investigate a more
general matroidal enumerator

n
WX, Y,Z) =Y Puj(2)X" 7Y,
j=0

Our second objective is to extend Greene’s theorem from codes to matroids by way of this matroidal weight enumerator.
Since its discovery, Greene’s theorem has been generalized, specialized, and extended in several ways. For example, in
addition to the already mentioned equivalence between the Tutte polynomial and the extended weight enumerator of
a linear code, it was demonstrated in [4, Theorems 4 and 5] and (independently) in [11, Theorem 3.3.5] that the Tutte
polynomial and the set of so-called higher weight enumerators of a linear code determine each other as well. Related results
and methods can also be found in [ 1], where the connection between the weight enumerator and the Tutte polynomial is
used to establish bounds on all-terminal reliability of vectorial matroids. In addition, [1] provides new proofs of Greene’s
theorem itself, and shows how the weight polynomial and the partition polynomial of the Potts model are related. The
connection between the weight enumerator and the Tutte polynomial is also used in [15, Corollaries 10, 11 and 12] when
looking at two-variable coloring formulas for graphs. A generalization of Greene’s theorem is given in [ 16, Theorem 9.4] to
latroids, which are useful for studying codes over rings.

As can be seenin [6, p. 131], the Tutte polynomial of a matroid determines its higher weights. Thus we already know that
the polynomials Py j, being equivalent to the Tutte polynomial, must determine the higher weights of M as well—at least
indirectly. We shall see that they do so in a very simple and accessible way.

1.1. Structure of this paper

e Section 2 contains definitions and results used later on.

e In Section 3 we look at the number of codewords in the extension of a linear code C over F;—as a polynomial in q".

e In Section 4, we generalize the polynomial from Section 3 to matroids, and use these generalized weight polynomials to
define a matroidal enumerator. We proceed to demonstrate that this enumerator is equivalent to the Tutte polynomial
of M.

e In Section 5 we prove our main result: The generalized weight polynomials are determined by the Betti numbers
associated to Nyp-graded minimal free resolutions of the Stanley-Reisner ideal of M and the elongations of M.

e In Section 6 we shall see a counterexample showing that the converse of our main result is not true; the generalized
weight enumerators do not determine the Ny-graded Betti numbers of the Stanley-Reisner ideal of M.

2. Preliminaries
2.1. Linear codes and weight enumerators

A linear [n, k]-code C over Fq is, by definition, a k-dimensional subspace of F7. The elements of this subspace are
commonly referred to as words, and any k x n matrix whose rows form a basis for C is referred to as a generator matrix.
Thus a linear code typically has several generator matrices.

The dual code is the orthogonal complement of C, and is denoted by C. A parity-check matrix of C is a (n — k) x n-matrix
with the property that

HX'=0&xeC.
It is easy to see that H is a parity check matrix for C if and only if H is a generator matrix for C.

2.2. Puncturing and shortening a linear code

Let C be a linear code of length n,and let] C {1...n}.

Definition 2.1. The puncturing of C in ] is the linear code obtained by eliminating the coordinates indexed by J from the
words of C.
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