Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A non-trivial intersection theorem for permutations with fixed number of cycles

Cheng Yeaw Ku^{a,*}, Kok Bin Wong^b

^a Department of Mathematics, National University of Singapore, Singapore 117543, Singapore ^b Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history: Received 21 January 2015 Received in revised form 16 July 2015 Accepted 28 September 2015 Available online 11 November 2015

Keywords: t-intersecting family Frankl–Hilton–Milner Erdős–Ko–Rado Permutations

ABSTRACT

Let S_n denote the set of permutations of $[n] = \{1, 2, ..., n\}$. For a positive integer k, define $S_{n,k}$ to be the set of all permutations of [n] with exactly k disjoint cycles, i.e.,

 $S_{n,k} = \{\pi \in S_n : \pi = c_1 c_2 \cdots c_k\},\$

where c_1, c_2, \ldots, c_k are disjoint cycles. The size of $S_{n,k}$ is given by $\begin{bmatrix} n \\ k \end{bmatrix} = (-1)^{n-k}s(n, k)$, where s(n, k) is the Stirling number of the first kind. A family $A \subseteq S_{n,k}$ is said to be *t*-cycleintersecting if any two elements of A have at least *t* common cycles. A family $A \subseteq S_{n,k}$ is said to be trivially *t*-cycle-intersecting if A is the stabiliser of *t* fixed points, i.e., A consists of all permutations in $S_{n,k}$ with some *t* fixed cycles of length one. For $1 \le j \le t$, let

$$\mathcal{Q}_{j} = \left\{ \sigma \in S_{n,k} : \sigma(i) = i \text{ for all } i \in [k] \setminus \{j\} \right\}.$$

For $t + 1 \le s \le k$, let

 $\mathcal{B}_{s} = \left\{ \sigma \in S_{n,k} : \sigma(i) = i \text{ for all } i \in [t] \cup \{s\} \right\}.$

In this paper, we show that, given any positive integers k, t with $k \ge 2t + 3$, there exists an $n_0 = n_0(k, t)$, such that for all $n \ge n_0$, if $\mathcal{A} \subseteq S_{n,k}$ is non-trivially t-cycle-intersecting, then

 $\left|\mathcal{A}\right| \leq \left|\mathcal{B}\right|,$

where $\mathscr{B} = \bigcup_{s=t+1}^{k} \mathscr{B}_{s} \cup \bigcup_{j=1}^{t} \mathscr{Q}_{j}$. Furthermore, equality holds if and only if \mathscr{A} is a conjugate of \mathscr{B} , i.e., $\mathscr{A} = \beta^{-1} \mathscr{B} \beta$ for some $\beta \in S_{n}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $[n] = \{1, ..., n\}$, and let $\binom{[n]}{k}$ denote the family of all *k*-subsets of [n]. A family \mathcal{A} of subsets of [n] is *t*-intersecting if $|A \cap B| \ge t$ for all $A, B \in \mathcal{A}$. One of the most beautiful results in extremal combinatorics is the Erdős–Ko–Rado theorem.

http://dx.doi.org/10.1016/j.disc.2015.09.032 0012-365X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: matkcy@nus.edu.sg (C.Y. Ku), kbwong@um.edu.my (K.B. Wong).

Theorem 1.1 (Erdős, Ko, and Rado [14], Frankl [15], Wilson [46]). Suppose $A \subseteq {\binom{[n]}{k}}$ is t-intersecting and n > 2k - t. Then for $n \ge (k - t + 1)(t + 1)$, we have

$$|\mathcal{A}| \leq \binom{n-t}{k-t}.$$

Moreover, if n > (k - t + 1)(t + 1) then equality holds if and only if $A = \{A \in {[n] \choose k} : T \subseteq A\}$ for some *t*-set *T*.

In the celebrated paper [2], Ahlswede and Khachatrian extended the Erdős–Ko–Rado theorem by determining the structure of all *t*-intersecting set systems of maximum size for all possible *n* (see also [4,18,26,31,37,40,42,43,45] for some related results). There have been many recent results showing that a version of the Erdős–Ko–Rado theorem holds for combinatorial objects other than set systems. For example, an analogue of the Erdős–Ko–Rado theorem for the Hamming scheme is proved in [41]. A complete solution for the *t*-intersection problem in the Hamming space is given in [3]. Intersecting families of permutations were initiated by Deza and Frankl in [11]. Some recent work done on this problem and its variants can be found in [6,8,9,12,13,20,27,29,38,39,44]. The investigation of the Erdős–Ko–Rado property for graphs started in [24], and gave rise to [5,7,22,32,5,47]. The Erdős–Ko–Rado type results also appear in vector spaces [10,19], set partitions [28,32,30] and weak compositions [33,35,36].

For a family A of k-subsets, A is said to be *trivially* t-intersecting if there exists a t-set $T = \{x_1, \ldots, x_t\}$ such that all members of A contain T. The Erdős–Ko–Rado theorem implies that a t-intersecting family of maximum size must be trivially t-intersecting when n is sufficiently large in terms of k and t.

Hilton and Milner [21] proved a strengthening of the Erdős–Ko–Rado theorem for t = 1 by determining the maximum size of a non-trivial 1-intersecting family. A short and elegant proof was later given by Frankl and Füredi [17] using the shifting technique.

Theorem 1.2 (Hilton-Milner). Let $\mathcal{A} \subseteq {\binom{[n]}{k}}$ be a non-trivial 1-intersecting family with $k \ge 4$ and n > 2k. Then

$$|\mathcal{A}| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1.$$

Equality holds if and only if

$$\mathcal{A} = \left\{ X \in \binom{[n]}{k} : x \in X, X \cap Y \neq \emptyset \right\} \cup \{Y\}$$

for some k-subset $Y \in {\binom{[n]}{k}}$ and $x \notin Y$.

Frankl [16] proved the following theorem which is a generalisation of Theorem 1.2.

Theorem 1.3 (Frankl). Given any positive integers k, t with $k \ge 2t + 2$, there exists a constant $n_0(k, t)$ depending only on k and t, such that for all $n \ge n_0(k, t)$, if $\mathcal{A} \subseteq {\binom{[n]}{k}}$ is non-trivially t-intersecting then

 $|\mathcal{A}| \leq |\mathcal{W}_0|,$

where

$$W_0 = \left\{ A \in \binom{[n]}{k} : [t] \subseteq A, A \cap \{t+1, \dots, k+1\} \neq \emptyset \right\}$$
$$\cup \{[k+1] \setminus \{i\} : i \in [t]\}.$$

Furthermore, equality holds if and only if $\mathcal{A} = \beta W_0$ for some $\beta \in S_n$.

In fact, the complete result on non-trivial intersection problems for finite sets was obtained by Ahlswede and Khachatrian in their seminal paper [1].

Let S_n denote the set of permutations of [n]. For a positive integer k, define $S_{n,k}$ to be the set of all permutations of [n] with exactly k disjoint cycles, i.e.,

 $S_{n,k} = \{\pi \in S_n : \pi = c_1 c_2 \cdots c_k\},\$

where c_1, c_2, \ldots, c_k are disjoint cycles. It is well known that the size of $S_{n,k}$ is given by $\begin{bmatrix} n \\ k \end{bmatrix} = (-1)^{n-k} s(n, k)$, where s(n, k) is the Stirling number of the first kind.

We shall use the following notations:

(a) $N(c) = \{a_1, a_2, \dots, a_l\}$ for a cycle $c = (a_1, a_2, \dots, a_l)$; (b) $M(\pi) = \{c_1, c_2, \dots, c_k\}$ for a $\pi = c_1c_2 \dots c_k \in S_{n,k}$. Download English Version:

https://daneshyari.com/en/article/4646662

Download Persian Version:

https://daneshyari.com/article/4646662

Daneshyari.com