A non-trivial intersection theorem for permutations with fixed number of cycles

Cheng Yeaw Ku ${ }^{\text {a,* }}$, Kok Bin Wong ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, National University of Singapore, Singapore 117543, Singapore
${ }^{\mathrm{b}}$ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

A R T I C L E I N F O

Article history:

Received 21 January 2015
Received in revised form 16 July 2015
Accepted 28 September 2015
Available online 11 November 2015

Keywords:

t-intersecting family
Frankl-Hilton-Milner
Erdős-Ko-Rado
Permutations

A B S T R A C T

Let S_{n} denote the set of permutations of $[n]=\{1,2, \ldots, n\}$. For a positive integer k, define $S_{n, k}$ to be the set of all permutations of [n] with exactly k disjoint cycles, i.e.,

$$
S_{n, k}=\left\{\pi \in S_{n}: \pi=c_{1} c_{2} \cdots c_{k}\right\}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are disjoint cycles. The size of $S_{n, k}$ is given by $\left[\begin{array}{l}n \\ k\end{array}\right]=(-1)^{n-k} S(n, k)$, where $s(n, k)$ is the Stirling number of the first kind. A family $\mathcal{A} \subseteq S_{n, k}$ is said to be t-cycleintersecting if any two elements of \mathcal{A} have at least t common cycles. A family $\mathcal{A} \subseteq S_{n, k}$ is said to be trivially t-cycle-intersecting if \mathcal{A} is the stabiliser of t fixed points, i.e., \mathcal{A} consists of all permutations in $S_{n, k}$ with some t fixed cycles of length one. For $1 \leq j \leq t$, let

$$
\mathcal{Q}_{j}=\left\{\sigma \in S_{n, k}: \sigma(i)=i \text { for all } i \in[k] \backslash\{j\}\right\}
$$

For $t+1 \leq s \leq k$, let

$$
\mathscr{B}_{s}=\left\{\sigma \in S_{n, k}: \sigma(i)=i \text { for all } i \in[t] \cup\{s\}\right\}
$$

In this paper, we show that, given any positive integers k, t with $k \geq 2 t+3$, there exists an $n_{0}=n_{0}(k, t)$, such that for all $n \geq n_{0}$, if $\mathcal{A} \subseteq S_{n, k}$ is non-trivially t-cycle-intersecting, then

$$
|\mathcal{A}| \leq|\mathscr{B}|,
$$

where $\mathscr{B}=\bigcup_{s=t+1}^{k} \mathscr{B}_{s} \cup \bigcup_{j=1}^{t} \mathcal{Q}_{j}$. Furthermore, equality holds if and only if \mathcal{A} is a conjugate of \mathcal{B}, i.e., $\mathcal{A}=\beta^{-1} \mathscr{B} \beta$ for some $\beta \in S_{n}$.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $[n]=\{1, \ldots, n\}$, and let $\binom{[n]}{k}$ denote the family of all k-subsets of $[n]$. A family \mathscr{A} of subsets of $[n]$ is t-intersecting if $|A \cap B| \geq t$ for all $A, B \in \mathcal{A}$. One of the most beautiful results in extremal combinatorics is the Erdős-Ko-Rado theorem.

[^0]Theorem 1.1 (Erdős, Ko, and Rado [14], Frankl [15], Wilson [46]). Suppose $\mathcal{A} \subseteq\binom{[n]}{k}$ is t-intersecting and $n>2 k-t$. Then for $n \geq(k-t+1)(t+1)$, we have

$$
|\mathcal{A}| \leq\binom{ n-t}{k-t}
$$

Moreover, if $n>(k-t+1)(t+1)$ then equality holds if and only if $\mathcal{A}=\left\{A \in\binom{[n]}{k}: T \subseteq A\right\}$ for some t-set T.
In the celebrated paper [2], Ahlswede and Khachatrian extended the Erdős-Ko-Rado theorem by determining the structure of all t-intersecting set systems of maximum size for all possible n (see also [4,18,26,31,37,40,42,43,45] for some related results). There have been many recent results showing that a version of the Erdős-Ko-Rado theorem holds for combinatorial objects other than set systems. For example, an analogue of the Erdős-Ko-Rado theorem for the Hamming scheme is proved in [41]. A complete solution for the t-intersection problem in the Hamming space is given in [3]. Intersecting families of permutations were initiated by Deza and Frankl in [11]. Some recent work done on this problem and its variants can be found in $[6,8,9,12,13,20,27,29,38,39,44]$. The investigation of the Erdős-Ko-Rado property for graphs started in [24], and gave rise to [5,7,22,23,25,47]. The Erdős-Ko-Rado type results also appear in vector spaces [10,19], set partitions $[28,32,30]$ and weak compositions [33,35,36].

For a family \mathcal{A} of k-subsets, \mathcal{A} is said to be trivially t-intersecting if there exists a t-set $T=\left\{x_{1}, \ldots, x_{t}\right\}$ such that all members of \mathscr{A} contain T. The Erdős-Ko-Rado theorem implies that a t-intersecting family of maximum size must be trivially t-intersecting when n is sufficiently large in terms of k and t.

Hilton and Milner [21] proved a strengthening of the Erdős-Ko-Rado theorem for $t=1$ by determining the maximum size of a non-trivial 1-intersecting family. A short and elegant proof was later given by Frankl and Füredi [17] using the shifting technique.

Theorem 1.2 (Hilton-Milner). Let $\mathcal{A} \subseteq\binom{[n]}{k}$ be a non-trivial 1 -intersecting family with $k \geq 4$ and $n>2 k$. Then

$$
|\mathcal{A}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1
$$

Equality holds if and only if

$$
\mathcal{A}=\left\{X \in\binom{[n]}{k}: x \in X, X \cap Y \neq \emptyset\right\} \cup\{Y\}
$$

for some k-subset $Y \in\binom{[n]}{k}$ and $x \notin Y$.
Frankl [16] proved the following theorem which is a generalisation of Theorem 1.2.
Theorem 1.3 (Frankl). Given any positive integers k, t with $k \geq 2 t+2$, there exists a constant $n_{0}(k, t)$ depending only on k and t, such that for all $n \geq n_{0}(k, t)$, if $\mathcal{A} \subseteq\binom{[n]}{k}$ is non-trivially t-intersecting then

$$
|\mathcal{A}| \leq\left|\mathcal{W}_{0}\right|
$$

where

$$
\begin{aligned}
& \mathcal{W}_{0}=\left\{A \in\binom{[n]}{k}:[t] \subseteq A, A \cap\{t+1, \ldots, k+1\} \neq \varnothing\right\} \\
& \cup\{[k+1] \backslash\{i\}: i \in[t]\}
\end{aligned}
$$

Furthermore, equality holds if and only if $\mathcal{A}=\beta \mathcal{W}_{0}$ for some $\beta \in S_{n}$.
In fact, the complete result on non-trivial intersection problems for finite sets was obtained by Ahlswede and Khachatrian in their seminal paper [1].

Let S_{n} denote the set of permutations of [n]. For a positive integer k, define $S_{n, k}$ to be the set of all permutations of $[n]$ with exactly k disjoint cycles, i.e.,

$$
S_{n, k}=\left\{\pi \in S_{n}: \pi=c_{1} c_{2} \cdots c_{k}\right\}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are disjoint cycles. It is well known that the size of $S_{n, k}$ is given by $\left[\begin{array}{l}n \\ k\end{array}\right]=(-1)^{n-k} s(n, k)$, where $s(n, k)$ is the Stirling number of the first kind.

We shall use the following notations:
(a) $N(c)=\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}$ for a cycle $c=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$;
(b) $M(\pi)=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ for a $\pi=c_{1} c_{2} \ldots c_{k} \in S_{n, k}$.

https://daneshyari.com/en/article/4646662

Download Persian Version:

https://daneshyari.com/article/4646662

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: matkcy@nus.edu.sg (C.Y. Ku), kbwong@um.edu.my (K.B. Wong).

