Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Gabriela Araujo-Pardo^a, Geoffrey Exoo^{b,*}, Robert Jajcay^c

^a Instituto de Matemáticas, Universidad Nacional Autonóma de México, Ciudad Universitaria, México D.F. 04510, Mexico

^b Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, United States

^c Department of Algebra, Comenius University, 842 48 Bratislava, Slovakia

ARTICLE INFO

Article history: Received 21 November 2013 Received in revised form 3 April 2015 Accepted 6 October 2015 Available online 11 November 2015

Keywords: Cage Bi-regular cage Recursive construction Order

ABSTRACT

A graph of girth g that contains vertices of degrees r and m is called a bi-regular $(\{r, m\}, g)$ -graph. As with the *Cage Problem*, we seek the smallest $(\{r, m\}, g)$ -graphs for given parameters $2 \le r < m, g \ge 3$, called $(\{r, m\}, g)$ -cages. The orders of the majority of $(\{r, m\}, g)$ -cages, in cases where m is much larger than r and the girth g is odd, have been recently determined via the construction of an infinite family of graphs whose orders match a well-known lower bound, but a generalization of this result to bi-regular cages of even girth proved elusive.

We summarize and improve some of the previously established lower bounds for the orders of bi-regular cages of even girth and present a generalization of the odd girth construction to even girths that provides us with a new general upper bound on the order of graphs with girths of the form g = 2t, t odd. This construction produces infinitely many ($\{r, m\}$; 6)-cages with sufficiently large m. We also determine a ($\{3, 4\}$; 10)-cage of order 82.

© 2015 Elsevier B.V. All rights reserved.

1. Preliminaries

The concept of bi-regular cages has been introduced in hopes of shedding some new light on the notoriously hard *Cage Problem* – the problem of determining the smallest possible orders of *k*-regular graphs of girth *g* for $k \ge 2$, $g \ge 3$. The two problems share a number of characteristics. The existence of (k, g)-graphs for any pair (k, g) with $k \ge 2$ and $g \ge 3$ has been established by Erdős and Sachs in [10,6]. A parallel result asserting the existence of $(\{r, m\}; g\}$ -graphs for any set of parameters $2 \le r < m$ and $g \ge 3$ has been shown by Chartrand, Gould and Kapoor in [4]. Similarly, a lower bound on the order of bi-regular graphs in terms of their degrees and girths can be obtained based on the same intuitive counting argument as the well-known Moore bound for the order of n(k, g)-cages [5]; for $2 \le r < m$ and $g \ge 3$,

$$n(\{r, m\}; g) \ge \begin{cases} 1 + m \sum_{i=0}^{t-1} (r-1)^i, & \text{for } g = 2t+1, \\ 1 + m \sum_{i=0}^{t-2} (r-1)^i + (r-1)^{t-1}, & \text{for } g = 2t. \end{cases}$$
(1)

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2015.10.009 0012-365X/© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: garaujo@math.unam.mx (G. Araujo-Pardo), ge@cs.indstate.edu (G. Exoo), robert.jajcay@fmph.uniba.sk (R. Jajcay).

However, unlike the case of the Moore bound for regular cages – which is known to be sharp for only a few families of parameters (k, g) (see, for example, [7]) – the above lower bound for bi-regular cages has been proved sharp for almost all bi-regular graphs of *odd* girth:

Theorem 1.1 ([8]). For every $r \ge 3$ and every odd $g = 2t + 1 \ge 3$, there exists an integer m_0 such that for every even $m \ge m_0$, the bi-regular ($\{r, m\}, g$)-cage is of order

$$1 + \sum_{i=1}^{t} m(r-1)^{i-1}.$$

In addition, when r is odd, the restriction on the parity of m can be removed, and there exists an integer m_0 such that a bi-regular $(\{r, m\}, g)$ -cage of the above order exists for all $m \ge m_0$.

The essence of this proof lies in a construction that adds edges (and only edges) to a tree with the number of vertices matching (1). In addition, even though the degrees m obtained in the proof of this result in [8] are much larger than the corresponding degrees r, computational evidence seems to suggest the existence of bi-regular graphs of odd girth and order equal to the lower bound (1) starting already from m's differing from r by 1 or 2. It is also interesting to note that all graphs of order matching the lower bound (1) constructed in [8] have the property that all but one of their vertices are of degree r – a clear indication that, in the case of odd girth, allowing for even just one vertex of higher degree makes the problem of finding bi-regular cages significantly easier than the original cage problem.

The case of bi-regular cages of even girth bigger than 4 appears to be more complicated.¹ This is mainly due to the fact that the intuitive lower bound (1) has been shown to be strictly smaller than the order of the ($\{r, m\}, 2t$)-cages, for all $t \ge 3$ [11,1]. As this can be also shown using ideas we use in the proofs throughout this paper, we reprove this result for illustration:

Lemma 1.2. Let \mathcal{G} be an $(\{r, m\}; g)$ -graph of even girth $g = 2t \ge 6$. Then

$$|V(g_i)| > 1 + m \sum_{i=0}^{t-2} (r-1)^i + (r-1)^{t-1}.$$

Proof. We proceed by contradiction. Let \mathcal{G} be an $(\{r, m\}; g)$ -graph, $g = 2t \ge 6$, and suppose that $|V(\mathcal{G})| = 1 + m \sum_{i=0}^{t-2} (r-1)^i + (r-1)^{t-1}$ (note that this is the value from the lower bound (1), so $|V(\mathcal{G})|$ is not smaller than this expression). Then \mathcal{G} contains at least one vertex u of degree m, and the subgraph \mathcal{G}_u of \mathcal{G} induced by the set of vertices of \mathcal{G} of distance not larger than t-1 must be a tree as otherwise we would violate the girth g = 2t of \mathcal{G} . Since u is of degree m, and every vertex of \mathcal{G}_u that is not a leaf is of degree at least r, $|V(\mathcal{G}_u)| \ge 1 + m \sum_{i=0}^{t-2} (r-1)^i$, and the number of edges incident to the leaves of \mathcal{G}_u is at least $m(r-1)^{t-1}$. Note that these edges all terminate in $V(\mathcal{G}) - V(\mathcal{G}_u)$. By the assumption about the order of \mathcal{G} , the set of vertices that do not belong to \mathcal{G}_u is of size $(r-1)^{t-1}$. This can only happen if all the above edges terminate in vertices of degree m, i.e., the set $V(\mathcal{G}) - V(\mathcal{G}_u)$ consists entirely of vertices of order m (each of them incident with exactly m edges from the set of edges incident to the leaves of \mathcal{G}_u). Thus, \mathcal{G} contains at least two vertices of degree m that are of distance 2 in \mathcal{G} . Let us assume without loss of generality that one of these vertices is the vertex u and the other one is v. Since $t \ge 3$, $v \in V(\mathcal{G}_u)$ and therefore \mathcal{G}_u contains more vertices than just $1 + m \sum_{i=0}^{t-2} (r-1)^i$. In addition, the number of edges incident to the branch of \mathcal{G}_u that contains v is greater than $(r-1)^{t-1}$. Furthermore, none of the edges attached to leaves of this branch can be attached to the same vertex as that would violate the girth of \mathcal{G} . Thus,

$$|V(\mathfrak{G})| = |V(\mathfrak{G}_u)| + |V(\mathfrak{G}) - V(\mathfrak{G}_u)| > 1 + m \sum_{i=0}^{t-2} (r-1)^i + (r-1)^{t-1}. \quad \Box$$

As argued in the above lemma, the bound (1) is universally unachievable. In addition, the forthcoming lower bounds as well as computational evidence suggest that the orders of bi-regular cages of even girth are quite bigger than (1) – the situation with bi-regular cages of even girth appears to be parallel to that with the original regular cages.

We begin the list of the improved lower bounds on the order of even-girth bi-regular cages with girth 6. First, the following lower bound has been proved in [11] for all $3 \le r < m$:

$$n(\{r, m\}; 6) \ge 2(rm - m + 1).$$
 (2)

This bound has been shown to be sharp for all $(\{3, m\}; 6)$ -cages with m > 3 in [9], for all $(\{r, m\}; 6)$ -cages with $2 \le r \le 5$ and m > r, as well as for all $(\{r, m\}; 6)$ -cages with m - 1 a prime power and $2 \le r < m$ in [11], and finally, for r - 1 a prime power and all $(\{r, kr\}; 6)$ -cages, $k \ge 2$, in [3]. In addition, it was conjectured in [11], that the bound is sharp for all

¹ Note for completeness that for girth 4 the order of the cages matches the lower bound (1), $n(\{r, m\}; 4) = r + m$, with the cages being the complete bipartite graphs $K_{r,m}$.

Download English Version:

https://daneshyari.com/en/article/4646663

Download Persian Version:

https://daneshyari.com/article/4646663

Daneshyari.com