Small bi-regular graphs of even girth

Gabriela Araujo-Pardo ${ }^{\text {a }}$, Geoffrey Exoo ${ }^{\text {b,* }}$, Robert Jajcay ${ }^{\text {c }}$
${ }^{a}$ Instituto de Matemáticas, Universidad Nacional Autonóma de México, Ciudad Universitaria, México D.F. 04510, Mexico
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, United States
${ }^{\text {c }}$ Department of Algebra, Comenius University, 84248 Bratislava, Slovakia

ARTICLE INFO

Article history:

Received 21 November 2013
Received in revised form 3 April 2015
Accepted 6 October 2015
Available online 11 November 2015

Keywords:

Cage
Bi-regular cage
Recursive construction
Order

Abstract

A graph of girth g that contains vertices of degrees r and m is called a bi-regular ($\{r, m\}, g$)-graph. As with the Cage Problem, we seek the smallest ($\{r, m\}, g$)-graphs for given parameters $2 \leq r<m, g \geq 3$, called ($\{r, m\}, g$)-cages. The orders of the majority of ($\{r, m\}, g$)-cages, in cases where m is much larger than r and the girth g is odd, have been recently determined via the construction of an infinite family of graphs whose orders match a well-known lower bound, but a generalization of this result to bi-regular cages of even girth proved elusive.

We summarize and improve some of the previously established lower bounds for the orders of bi-regular cages of even girth and present a generalization of the odd girth construction to even girths that provides us with a new general upper bound on the order of graphs with girths of the form $g=2 t, t$ odd. This construction produces infinitely many ($\{r, m\} ; 6$)-cages with sufficiently large m. We also determine a (\{3, 4\}; 10)-cage of order 82 .

© 2015 Elsevier B.V. All rights reserved.

1. Preliminaries

The concept of bi-regular cages has been introduced in hopes of shedding some new light on the notoriously hard Cage Problem - the problem of determining the smallest possible orders of k-regular graphs of girth g for $k \geq 2, g \geq 3$. The two problems share a number of characteristics. The existence of (k, g)-graphs for any pair (k, g) with $k \geq 2$ and $g \geq 3$ has been established by Erdős and Sachs in [10,6]. A parallel result asserting the existence of ($\{r, m\} ; g$)-graphs for any set of parameters $2 \leq r<m$ and $g \geq 3$ has been shown by Chartrand, Gould and Kapoor in [4]. Similarly, a lower bound on the order of bi-regular graphs in terms of their degrees and girths can be obtained based on the same intuitive counting argument as the well-known Moore bound for the order of $n(k, g)$-cages [5]: for $2 \leq r<m$ and $g \geq 3$,

$$
n(\{r, m\} ; g) \geq \begin{cases}1+m \sum_{\substack{i=0 \\ t-1}-1)^{i},}^{t-2}(r-1)^{i}+(r-1)^{t-1}, & \text { for } g=2 t+1, \tag{1}\\ 1+m \sum_{i=0}^{t-2}(r-2 t\end{cases}
$$

[^0]However, unlike the case of the Moore bound for regular cages - which is known to be sharp for only a few families of parameters (k, g) (see, for example, [7]) - the above lower bound for bi-regular cages has been proved sharp for almost all bi-regular graphs of odd girth:

Theorem 1.1 ([8]). For every $r \geq 3$ and every odd $g=2 t+1 \geq 3$, there exists an integer m_{0} such that for every even $m \geq m_{0}$, the bi-regular ($\{r, m\}, g$)-cage is of order

$$
1+\sum_{i=1}^{t} m(r-1)^{i-1}
$$

In addition, when r is odd, the restriction on the parity of m can be removed, and there exists an integer m_{0} such that a bi-regular ($\{r, m\}, g$)-cage of the above order exists for all $m \geq m_{0}$.

The essence of this proof lies in a construction that adds edges (and only edges) to a tree with the number of vertices matching (1). In addition, even though the degrees m obtained in the proof of this result in [8] are much larger than the corresponding degrees r, computational evidence seems to suggest the existence of bi-regular graphs of odd girth and order equal to the lower bound (1) starting already from m 's differing from r by 1 or 2 . It is also interesting to note that all graphs of order matching the lower bound (1) constructed in [8] have the property that all but one of their vertices are of degree r - a clear indication that, in the case of odd girth, allowing for even just one vertex of higher degree makes the problem of finding bi-regular cages significantly easier than the original cage problem.

The case of bi-regular cages of even girth bigger than 4 appears to be more complicated. ${ }^{1}$ This is mainly due to the fact that the intuitive lower bound (1) has been shown to be strictly smaller than the order of the (\{r,m\},2t)-cages, for all $t \geq 3[11,1]$. As this can be also shown using ideas we use in the proofs throughout this paper, we reprove this result for illustration:

Lemma 1.2. Let g be an ($\{r, m\} ; g$)-graph of even girth $g=2 t \geq 6$. Then

$$
|V(q)|>1+m \sum_{i=0}^{t-2}(r-1)^{i}+(r-1)^{t-1}
$$

Proof. We proceed by contradiction. Let g be an $(\{r, m\} ; g)$-graph, $g=2 t \geq 6$, and suppose that $|V(\mathcal{g})|=1+m \sum_{i=0}^{t-2}(r-$ $1)^{i}+(r-1)^{t-1}$ (note that this is the value from the lower bound (1), so $|V(g)|$ is not smaller than this expression). Then g contains at least one vertex u of degree m, and the subgraph g_{u} of g induced by the set of vertices of g of distance not larger than $t-1$ must be a tree as otherwise we would violate the girth $g=2 t$ of g. Since u is of degree m, and every vertex of g_{u} that is not a leaf is of degree at least $r,\left|V\left(g_{u}\right)\right| \geq 1+m \sum_{i=0}^{t-2}(r-1)^{i}$, and the number of edges incident to the leaves of g_{u} is at least $m(r-1)^{t-1}$. Note that these edges all terminate in $V(q)-V\left(g_{u}\right)$. By the assumption about the order of g, the set of vertices that do not belong to \mathscr{g}_{u} is of size $(r-1)^{t-1}$. This can only happen if all the above edges terminate in vertices of degree m, i.e., the set $V(\underline{g})-V\left(\mathcal{G}_{u}\right)$ consists entirely of vertices of order m (each of them incident with exactly m edges from the set of edges incident to the leaves of g_{u}). Thus, g contains at least two vertices of degree m that are of distance 2 in g. Let us assume without loss of generality that one of these vertices is the vertex u and the other one is v. Since $t \geq 3$, $v \in V\left(g_{u}\right)$ and therefore g_{u} contains more vertices than just $1+m \sum_{i=0}^{t-2}(r-1)^{i}$. In addition, the number of edges incident to the branch of \mathcal{g}_{u} that contains v is greater than $(r-1)^{t-1}$. Furthermore, none of the edges attached to leaves of this branch can be attached to the same vertex as that would violate the girth of g. Thus,

$$
|V(\mathcal{g})|=\left|V\left(\mathcal{G}_{u}\right)\right|+\left|V(\mathcal{G})-V\left(\mathcal{G}_{u}\right)\right|>1+m \sum_{i=0}^{t-2}(r-1)^{i}+(r-1)^{t-1}
$$

As argued in the above lemma, the bound (1) is universally unachievable. In addition, the forthcoming lower bounds as well as computational evidence suggest that the orders of bi-regular cages of even girth are quite bigger than (1) - the situation with bi-regular cages of even girth appears to be parallel to that with the original regular cages.

We begin the list of the improved lower bounds on the order of even-girth bi-regular cages with girth 6 . First, the following lower bound has been proved in [11] for all $3 \leq r<m$:

$$
\begin{equation*}
n(\{r, m\} ; 6) \geq 2(r m-m+1) \tag{2}
\end{equation*}
$$

This bound has been shown to be sharp for all ($\{3, m\}$; 6)-cages with $m>3$ in [9], for all ($\{r, m\}$; 6)-cages with $2 \leq r \leq 5$ and $m>r$, as well as for all $(\{r, m\}$; 6)-cages with $m-1$ a prime power and $2 \leq r<m$ in [11], and finally, for $r-1$ a prime power and all (\{r, kr\};6)-cages, $k \geq 2$, in [3]. In addition, it was conjectured in [11], that the bound is sharp for all

[^1]
https://daneshyari.com/en/article/4646663

Download Persian Version:

https://daneshyari.com/article/4646663

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: garaujo@math.unam.mx (G. Araujo-Pardo), ge@cs.indstate.edu (G. Exoo), robert.jajcay@fmph.uniba.sk (R. Jajcay).

[^1]: ${ }^{1}$ Note for completeness that for girth 4 the order of the cages matches the lower bound $(1), n(\{r, m\} ; 4)=r+m$, with the cages being the complete bipartite graphs $K_{r, m}$.

