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a b s t r a c t

A classical result of Ore states that if a graph G of order n satisfies degG x + degG y ≥ n − 1
for every pair of nonadjacent vertices x and y of G, then G contains a hamiltonian path. In
this note, we interpret a hamiltonian path as a spanning tree which is a subdivision of K2
and extend Ore’s result to a sufficient condition for the existence of a spanning tree which
is a subdivision of a tree of a bounded order. We prove that for a positive integer k, if a
connected graph G satisfies degG x+degG y ≥ n−k for every pair of nonadjacent vertices x
and y of G, then G contains a spanning tree which is a subdivision of a tree of order at most
k + 2. We also discuss the sharpness of the result.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There aremany studies on spanning trees which are inspired by a hamiltonian path. They interpret a hamiltonian path as
a spanning tree with an additional property and take a certain sufficient condition for the existence of a hamiltonian path.
Then by relaxing the condition, they observe how this additional property changes. There are several different views on the
additional property. For example, a hamiltonian path is a spanning tree of maximum degree at most two. This fact leads us
to the notion of a k-tree, which is a spanning tree of maximum degree at most a given constant k. Another study interprets
a hamiltonian path as a spanning tree with two leaves, where a leaf of a tree T is a vertex of degree at most one in T . We
can generalize this interpretation to the notion of a k-ended tree, which is a spanning tree with at most k leaves. Both k-trees
and k-ended trees have been investigated in a number of papers. To the readers who are interested in these topics, we refer
the recent survey by Ozeki and Yamashita [5].

In this note, we take a different approach. A path of order at least two is a subdivision of K2. Motivated by this observation,
we investigate a sufficient condition for a graph to contain a spanning tree which is homeomorphic to a tree of a bounded
order.

Let k be a positive integer and let G be a graph. If k ≤ α(G), where α(G) is the independence number of G, we define
σk(G) by

σk(G) = min


x∈S

degG x : S is an independent set of G of order k


.

If k > α(G), we define σk(G) = +∞. Ore [4] has proved that for an integer nwith n ≥ 3, a graph G of order nwith σ2(G) ≥ n
contains a hamiltonian cycle. As an easy corollary of this result, we obtain the following theorem.

Theorem A. A graph G of order n with σ2(G) ≥ n − 1 contains a hamiltonian path.
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The purpose of this note is to extend Theorem A and prove the following theorem.

Theorem 1. Let k be a positive integer. Then a connected graph G of order n with σ2(G) ≥ n− k contains a spanning tree which
is homeomorphic to a tree of order at most k + 2.

Theorem A does not explicitly assume that G is connected since it is implied by σ2(G) ≥ |V (G)| − 1. However, for k ≥ 2,
the condition σ2(G) ≥ |V (G)|−k does not imply the connectedness of G. Therefore, we explicitly assume the connectedness
of G in Theorem 1.

If we put k = 1 in Theorem 1, the conclusion only guarantees the existence of a spanning tree homeomorphic to a tree
of order at most three, which looks weaker than Theorem A. However, a tree of order three is a path and homeomorphic to
K2. Hence Theorem 1 actually implies Theorem A.

Seeing the discussion in the previous paragraph, one may suspect that under the same assumption as in Theorem 1, we
can guarantee the existence of a spanning tree homeomorphic to a tree of order at most k+ 1. But this is not true for k ≥ 2.
We will discuss the sharpness of Theorem 1 in Section 3.

Broersma and Tuinstra [1] have proved the following theorem.

Theorem B (Broersma and Tuinstra [1]). Let k be a positive integer and let G be a connected graph of order n. If σ2(G) ≥ n − k,
then G contains a (k + 1)-ended tree.

For k ≥ 1, a tree homeomorphic to a tree of order at most k+ 2 contains at most k+ 1 leaves. Therefore, Theorem 1 implies
Theorem B.

We give a proof of Theorem 1 in the next section, and we discuss the sharpness of Theorem 1 in Section 3. We make
concluding remarks in Section 4.

For basic graph-theoretic notation and definitions not explained in this note, we refer the reader to [2]. Let T be a tree
and let u and v be vertices in T . Then we denote by uTv the unique path from u and v in T . If u is an endvertex of a path P ,
we say that u and P are incident with each other. For a vertex x in a graph G, we denote by NG(x) the neighborhood of x in G.
We say that G is nontrivial if |V (G)| ≥ 2.

2. Proof of the main theorem

As we have mentioned in the introduction, a vertex of degree at most one in a tree T is called a leaf. On the other hand,
we call a vertex of degree at least three in T a branch vertex. Let L(T ) and S(T ) be the sets of leaves and branch vertices of T ,
respectively.

Let G be a tree and let x be a vertex of degree two in G. Let NG(x) = {u, v} and assume uv ∉ E(G). Then the operation
of deleting x and adding the edge uv is called suppressing x. It is a reverse operation of simple subdivision of the edge uv.
If we successively suppress the vertices of degree two in a tree T , we eventually obtain a tree on L(T ) ∪ S(T ). We call this
tree the reduced tree of T . Note that the reduced tree is uniquely determined, regardless of the order of the vertices chosen
for suppression. Note also that the reduced tree does not have a vertex of degree two. Since every tree is a subdivision of its
reduced tree, we can paraphrase Theorem 1 in the following way.

Theorem 2. Let k and n be positive integers, and let G be a connected graph of order n. If σ2(G) ≥ n − k, then G has a spanning
tree T with |L(T )| + |S(T )| ≤ k + 2.

Let T be a tree of order at least two and let T1 be its reduced tree. Then an edge of T1 corresponds to a path in T which
joins two vertices in L(T ) ∪ S(T ). A bough of T is a path in T corresponding to an edge of T1 which is incident with a leaf. On
the other hand, a path in T which corresponds to an edge of T1 joining two branch vertices is called a trunk of T . Note that
E(T ) is decomposed into the sets of edges of boughs and trunks of T .

We introduce a special branch vertex of a tree, which plays an important role in the proof of Theorem 2. Let T be a tree
which contains at least one branch vertex. Let P be a bough of T and let z be the branch vertex of P that is incident with P .
When we say that we delete P , we mean to delete V (P) − {z} from T . Note that the resulting graph is a tree. The pruned tree
of T is the tree obtained from T by deleting all the boughs of T . Let T ′ be the pruned tree of T . Then L(T ′) ⊂ S(T ). We call a
member of L(T ′) a peripheral branch vertex of T .

Let T be a tree with at least one branch vertex, and let z be a peripheral branch vertex of T . By the definition, if T contains
two ormore branch vertices, then exactly one trunk is incidentwith z, and the number of boughs incidentwith z is degT z−1.
If z is the only branch vertex of T , then T has no trunk, and all the boughs of T are incident with z. In both cases, at least two
boughs are incident with z.

Let G be a connected graph and let T be a spanning tree of G. If T is chosen so that

(1) |L(T )| is as small as possible, and
(2) |S(T )| is as small as possible, subject to (1),

then T is called an optimal tree of G.
We first make several observations about an optimal tree.



Download English Version:

https://daneshyari.com/en/article/4646665

Download Persian Version:

https://daneshyari.com/article/4646665

Daneshyari.com

https://daneshyari.com/en/article/4646665
https://daneshyari.com/article/4646665
https://daneshyari.com

