Triangle-free graphs with the maximum number of cycles

Andrii Arman, David S. Gunderson, Sergei Tsaturian*
University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2

ARTICLE INFO

Article history:

Received 11 February 2015
Received in revised form 26 September 2015
Accepted 5 October 2015
Available online 11 November 2015

Keywords:

Maximum number of cycles
Cycle-maximal
Triangle-free
Hamiltonian cycles

Abstract

It is shown that for $n \geq 141$, among all triangle-free graphs on n vertices, the balanced complete bipartite graph $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$ is the unique triangle-free graph with the maximum number of cycles. Using modified Bessel functions, tight estimates are given for the number of cycles in $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$. Also, an upper bound for the number of Hamiltonian cycles in a triangle-free graph is given.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are simple and undirected.
In a recent article [14], the maximum number of cycles in a triangle-free graph was considered. It was asked which triangle-free graphs contain the maximum number of cycles; this question arose from the study of path-finding algorithms [10]. The same authors posed the following conjecture:

Conjecture 1 (Durocher-Gunderson-Li-Skala, 2014 [14]). For each $n \geq 4$, the balanced complete bipartite graph $K_{\lceil n / 27,\lfloor n / 2\rfloor}$ contains more cycles than any other n-vertex triangle-free graph.

The authors [14] confirmed Conjecture 1 when $4 \leq n \leq 13$, and made progress toward this conjecture in general. For example, they showed the conjecture to be true when restricted to "nearly regular graphs", that is, for each positive integer k and sufficiently large $n, K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$ has more cycles than any other triangle-free graph on n vertices whose minimum degree and maximum degree differ by at most k.

In Theorems 5.1 and 5.2, it is shown that Conjecture 1 holds true for $n \geq 141$. Theorem 3.4 gives a useful estimate for the number of cycles in $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$. In Lemma 4.3, an upper bound is given for the number of Hamiltonian cycles in a triangle-free graph.

Even though Conjecture 1 arose from a very specific problem in computing, it can be considered as a significant problem in two aspects of graph theory: counting cycles in graphs, and the structure of triangle-free graphs. In recent decades, bounds have been proved for the maximum number of cycles in various classes of graphs. Some of these classes include complete graphs [21]; planar graphs [4,5,11]; outerplanar graphs and series-parallel graphs [13]; graphs with large maximum degree without a specified odd cycle [8]; graphs with specified minimum degree [35]; graphs with a specified cyclomatic number or number of edges [2,23,15,19] (see also [25, Ch4, Ch10]); cubic graphs [3,12]; graphs with fixed girth [27];, k-connected

[^0]graphs [24]; Hamiltonian graphs [28,31,35]; Hamiltonian graphs with a fixed number of edges [20]; 2-factors of the de Bruijn graph [17]; graphs with a cut-vertex [35]; complements of trees [22,29,36]; and random graphs [34]. In some cases, the structure of the extremal graphs are also found (see, e.g., [8,28]).

In 1973, Erdős, Kleitman, and Rothschild [16] showed that for $r \geq 3$, as $n \rightarrow \infty$, the number of K_{r}-free graphs on n vertices is

$$
2^{\left(1-\frac{1}{r-1}+o(1)\right)\binom{n}{2}}
$$

As a consequence, the number of triangle-free graphs is very close to the number of bipartite graphs, and so almost all triangle-free graphs are bipartite. By Mantel's theorem [26], among graphs on n vertices, the triangle-free graph with the most number of edges is the balanced complete bipartite graph $K_{[n / 2\rceil,\lfloor n / 2\rfloor}$.

Since $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$ is the triangle-free graph on n vertices with the most number of edges, and nearly all triangle-free graphs are bipartite, Conjecture 1 might seem reasonable, even though $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$ contains no odd cycles.

2. Notation and approximations used

A graph G is an ordered pair $G=(V, E)=(V(G), E(G))$, where V is a nonempty set and E is a set of unordered pairs from V. Elements of V are called vertices and elements of E are called edges. Under this definition, graphs are simple, that is, there are no loops nor multiple edges.

An edge $\{x, y\} \in E(G)$ is denoted by simply $x y$. The neighborhood of any vertex $v \in V(G)$ is $N_{G}(x)=\{y \in V(G): x y \in$ $E(G)\}$, and the degree of x is $\operatorname{deg}_{G}(x)=|N(x)|$. When it is clear what G is, subscripts are deleted, using only $N(x)$ and $\operatorname{deg}(x)$. The minimum degree of vertices in a graph G is denoted by $\delta(G)$, and the maximum degree is denoted $\Delta(G)$. If $Y \subset V(G)$, the subgraph of G induced by Y is denoted $G[Y]$.

A graph $G=(V, E)$ is called bipartite iff there is a partition $V=A \cup B$ so that $E \subset\{\{x, y\}: x \in A, y \in B\}$; if $E=\{\{x, y\}: x \in A, y \in B\}$, then G is called the complete bipartite graph on partite sets A and B, denoted $G=K_{|A|,|B|}$. The balanced complete bipartite graph on n vertices is $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$. A cycle on m vertices is denoted C_{m}. The complement of a graph G is denoted \bar{G}. For any graph G, let $c(G)$ denote the number of cycles in G.

The number e is the base of the natural logarithm. The Stirling's approximation formula says that as $n \rightarrow \infty$,

$$
\begin{equation*}
n!=(1+o(1)) \sqrt{2 \pi n}(n / e)^{n} \tag{1}
\end{equation*}
$$

In 1955, Robbins [30] proved that

$$
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n+1}}<n!<\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\frac{1}{12 n}} .
$$

Slightly more convenient bounds (valid for all $n \geq 1$) are freely used in this paper (e.g., in the proof of Theorem 3.4).

$$
\begin{equation*}
\sqrt{2 \pi} \cdot \sqrt{n}\left(\frac{n}{e}\right)^{n}<n!\leq e \cdot \sqrt{n}\left(\frac{n}{e}\right)^{n} \tag{2}
\end{equation*}
$$

Two modified Bessel functions (see, e.g., [1]) are used:

$$
\begin{align*}
& I_{0}(x)=\sum_{k=0}^{\infty} \frac{x^{2 k}}{2^{2 k}(i!)^{2}} \tag{3}\\
& I_{1}(x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{2^{2 k+1} i!(i+1)!} . \tag{4}
\end{align*}
$$

In particular, when $x=2$ is used in either modified Bessel function, useful approximations are obtained:

$$
\begin{align*}
& 2.27958 \leq \sum_{i=0}^{\infty} \frac{1}{(i!)^{2}}=I_{0}(2) \leq 2.279586 \tag{5}\\
& 1.5906 \leq \sum_{i=0}^{\infty} \frac{i}{(i!)^{2}}=\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}=I_{1}(2) \leq 1.59064 \tag{6}
\end{align*}
$$

3. Preliminaries

The following shows that among all bipartite graphs, the balanced one has the most cycles.
Lemma 3.1 ([14]). For $n \geq 4$, among all bipartite graphs on n vertices, $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$ has the greatest number of cycles; that is, $K_{\lceil n / 2\rceil,\lfloor n / 2\rfloor}$ is the unique cycle-maximal bipartite graph on n vertices.

https://daneshyari.com/en/article/4646668

Download Persian Version:
https://daneshyari.com/article/4646668

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: armana@cc.umanitoba.ca (A. Arman), David.Gunderson@umanitoba.ca (D.S. Gunderson), tsaturis@cc.umanitoba.ca (S. Tsaturian).

