Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Optimal unavoidable sets of types of 3-paths for planar graphs of given girth

^a Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia ^b University Montpellier 2, LIRMM, CNRS, UMR 5506, 161 Rue Ada, 34095 Montpellier Cedex 5, France

ARTICLE INFO

Article history: Received 24 June 2015 Received in revised form 3 October 2015 Accepted 9 October 2015 Available online 11 November 2015

Keywords: Girth Optimal unavoidable set 3-path Planar graph

ABSTRACT

In this paper we study unavoidable sets of types of 3-paths for families of planar graphs with minimum degree at least 2 and a given girth g. A 3-path of type (i, j, k) is a path uvw on three vertices u, v, and w such that the degree of u (resp. v, resp. w) is at most i (resp. j, resp. k). The elements i, j, k are called *parameters* of the type. The set S of types of paths is *unavoidable* for a family \mathcal{F} of graphs if each graph G from \mathcal{F} contains a path of the type from S. An unavoidable set S of types of paths is *optimal* for the family \mathcal{F} if neither any type can be omitted from S, nor any parameter of any type from S can be decreased.

We prove that the set S_g (resp. S'_g) is an optimal set of types of 3-paths for the family of plane graphs having $\delta(G) \ge 2$ and girth $g(G) \ge g$ where

(i) $S_5 = \{(2, \infty, 2), (2, 3, 5), (2, 4, 3), (3, 3, 3)\},$ (ii) $S_7 = \{(2, 3, 3), (2, 5, 2)\},$ $S'_7 = \{(2, 2, 6), (2, 3, 3), (2, 4, 2)\},$ (iii) $S_8 = \{(2, 2, 5), (2, 3, 2)\},$ (iv) $S_{10} = \{(2, 4, 2)\},$ $S'_{10} = \{(2, 2, 3), (2, 3, 2)\},$ (v) $S_{11} = \{(2, 2, 3)\}.$

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we use a standard graph theory terminology according to the book [3]. However we recall here some notions. Let *G* be a connected plane graph. We use V(G), E(G), F(G), $\Delta(G)$, and $\delta(G)$ (or simply *V*, *E*, *F*, Δ , δ) to denote the vertex set, the edge set, the face set, the maximum degree, and the minimum degree of *G*, respectively. Faces of *G* are open 2-cells. The boundary of a face α is the boundary in the usual topological sense. It is a collection of all edges and vertices lying in the closure of a face α that can be organized into a closed walk in the graph *G* by traversing a simple closed curve just inside the face α . This closed walk is unique up to the choice of initial vertex and direction, and is called the *boundary walk* of the face α (see [11], p. 101).

The *degree* of a vertex v or a face α , that is the number of edges incident with v or the length of the boundary walk of α , is denoted by deg(v) or deg (α) , respectively. A *k*-vertex is a vertex v with deg(v) = k. By k^+ or k^- we denote any integer not

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2015.10.016 0012-365X/© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: stanislav.jendrol@upjs.sk (S. Jendrol'), maria.macekova@student.upjs.sk (M. Maceková), mickael.montassier@lirmm.fr (M. Montassier), roman.sotak@upjs.sk (R. Soták).

smaller or not greater than k, respectively. Hence, a k^+ -vertex v (resp. k^+ -face α) satisfies deg $(v) \ge k$ (resp. deg $(\alpha) \ge k$) and k^- -vertex v (resp. k^- -face α) satisfies deg $(v) \le k$ (resp. deg $(\alpha) \le k$). The girth g(G) of G is the length of a shortest cycle in G. A k-path is a path on k vertices ($k \ge 1$). Let $w_k(G) = w_k$ be the minimum sum of degrees of vertices of a path on k vertices. A k-path on vertices v_1, \ldots, v_k is a path of type (a_1, \ldots, a_k) or an (a_1, \ldots, a_k) -path if deg $(v_i) \le a_i$ for every $i \in \{1, \ldots, k\}$. The elements a_1, \ldots, a_k are called parameters of the type. The set S of types of paths is unavoidable for a family \mathcal{F} of graphs if each graph G from \mathcal{F} contains a path of the type from S. An unavoidable set S of types of paths is optimal for the family \mathcal{F} if neither the type can be omitted from S, nor any parameter of any type from S can be decreased.

In this paper we study unavoidable sets of types of 3-paths for families of planar graphs with minimum degree at least 2 and a given girth g. It is well known that every planar graph contains a vertex of degree at most 5. When the girth of a planar graph increases, one can guarantee the existence of a vertex with a smaller degree: every planar graph with girth at least 4 (resp. 6) contains a vertex of degree at most 3 (resp. at most 2). Moreover, if the girth is at least 5k + 1 ($k \ge 1$), then a planar graph contains either a vertex of degree 1 or a k-path consisting of k vertices of degree 2 [20]. It is then natural to ask a similar question for larger structures, for example, for (i, j)-paths or (i, j, k)-paths. Concerning the existence of (i, j)-paths (such paths are also called *light edges*, see [17]) in a normal plane map¹, the effort of Lebesgue [19], Kotzig [18], Barnette [12] has flowed in the following theorem by Borodin [4]:

Theorem 1 (Borodin [4]). The set of types of 2-paths $\{(3, 10), (4, 7), (5, 6)\}$ is optimal for the family of normal plane maps.

That result was then extended by Jendrol' and Maceková as follows:

Theorem 2 (Jendrol' and Maceková [14]). The set P_g is an optimal set of 2-paths for the family of plane graphs with minimum degree $\delta(G) \ge 2$ and girth $g(G) \ge g$ where

(i) $P_5 = \{(2, 5), (3, 3)\},$ (ii) $P_6 = \{(2, 5)\},$ (iii) $P_7 = \{(2, 3)\},$ (iv) $P_{11} = \{(2, 2)\}.$

In plane graphs with $\delta(G) \ge 2$ and $g(G) \le 4$ there can exist a 2-path of the type (2, r) for arbitrary $r \in \mathbb{N}$ (see the graph $K_{2,r}$).

Now, consider (i, j, k)-paths. The main motivation for our research comes from the following results:

Theorem 3 (Franklin [10]). Every normal plane map G such that $\delta(G) = 5$ contains a (6, 5, 6)-path.

Theorem 4 (Ando, Iwasaki, Kaneko [2]). Every 3-polytope² satisfies $w_3 \le 21$, which is tight.

Theorem 5 (Jendrol' [13]). The set of types of 3-paths $\{(10, 3, 10), (7, 4, 7), (6, 5, 6), (3, 4, 15), (3, 6, 11), (3, 8, 5), (3, 10, 3), (4, 4, 11), (4, 5, 7), (4, 7, 5)\}$ is unavoidable for the family of 3-polytopes.

Theorem 6 (Borodin, Ivanova, Jensen, Kostochka, Yancey [6]). The set of types of 3-paths $\{(3, 3, \infty), (3, 4, 11), (3, 7, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (6, 4, 8), (6, 5, 6), (7, 4, 7)\}$ is optimal for the family of normal plane maps.

Theorem 7 (Borodin, Ivanova, Kostochka [7]). The set of types of 3-paths $S = \{(3, 3, \infty), (3, 4, 11), (3, 8, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (4, 7, 4), (5, 5, 7), (6, 4, 7), (6, 5, 6)\}$ is optimal for the family of normal plane maps.

Theorems 6 and 7 provide two uncomparable optimal sets of types of 3-paths for the family of normal plane maps. In [7] there is formulated an interesting problem of determining the exact list of distinct optimal sets of types of 3-paths for given families of plane graphs. Borodin and Ivanova in [5] give seven mutually uncomparable optimal sets of types of 3-paths for triangle-free normal plane maps.

Theorem 8 (Borodin, Ivanova [5]). There exist precisely seven optimal sets of types of 3-paths for triangle-free normal plane maps:

(i) $\{(5, 3, 6), (4, 3, 7)\},\$ (ii) $\{(3, 5, 3), (3, 4, 4)\},\$ (iii) $\{(5, 3, 6), (3, 4, 3)\},\$ (iv) $\{(3, 5, 3), (4, 3, 4)\},\$ (v) $\{(5, 3, 7)\},\$ (vi) $\{(3, 5, 4)\},\$ (vii) $\{(5, 4, 6)\}.\$

¹ A normal plane map is a plane graph in which loops and multiple edges are allowed, but the degree of each vertex and face is at least three.

² 3-*polytopes* are precisely 3-connected planar graphs (Steinitz's theorem).

Download English Version:

https://daneshyari.com/en/article/4646676

Download Persian Version:

https://daneshyari.com/article/4646676

Daneshyari.com