Optimal unavoidable sets of types of 3-paths for planar graphs of given girth

S. Jendrol’ ${ }^{\text {a }}$, M. Maceková ${ }^{\text {a }}$, M. Montassier ${ }^{\text {b }}$, R. Soták ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
${ }^{\text {b }}$ University Montpellier 2, LIRMM, CNRS, UMR 5506, 161 Rue Ada, 34095 Montpellier Cedex 5, France

A R TICLE INFO

Article history:

Received 24 June 2015
Received in revised form 3 October 2015
Accepted 9 October 2015
Available online 11 November 2015

Keywords:

Girth
Optimal unavoidable set
3-path
Planar graph

Abstract

can be omitted from S, nor any parameter of any type from S can be decreased. of plane graphs having $\delta(G) \geq 2$ and girth $g(G) \geq g$ where (i) $S_{5}=\{(2, \infty, 2),(2,3,5),(2,4,3),(3,3,3)\}$, (ii) $S_{7}=\{(2,3,3),(2,5,2)\}$, $S_{7}^{\prime}=\{(2,2,6),(2,3,3),(2,4,2)\}$, (iii) $S_{8}=\{(2,2,5),(2,3,2)\}$, (iv) $S_{10}=\{(2,4,2)\}$, $S_{10}^{\prime}=\{(2,2,3),(2,3,2)\}$, (v) $S_{11}=\{(2,2,3)\}$.

In this paper we study unavoidable sets of types of 3-paths for families of planar graphs with minimum degree at least 2 and a given girth g. A 3-path of type (i, j, k) is a path $u v w$ on three vertices u, v, and w such that the degree of u (resp. v, resp. w) is at most i (resp. j, resp. k). The elements i, j, k are called parameters of the type. The set S of types of paths is unavoidable for a family \mathcal{F} of graphs if each graph G from \mathcal{F} contains a path of the type from S. An unavoidable set S of types of paths is optimal for the family \mathcal{F} if neither any type

We prove that the set S_{g} (resp. $S^{\prime}{ }_{g}$) is an optimal set of types of 3-paths for the family
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we use a standard graph theory terminology according to the book [3]. However we recall here some notions.
Let G be a connected plane graph. We use $V(G), E(G), F(G), \Delta(G)$, and $\delta(G)$ (or simply V, E, F, Δ, δ) to denote the vertex set, the edge set, the face set, the maximum degree, and the minimum degree of G, respectively. Faces of G are open 2-cells. The boundary of a face α is the boundary in the usual topological sense. It is a collection of all edges and vertices lying in the closure of a face α that can be organized into a closed walk in the graph G by traversing a simple closed curve just inside the face α. This closed walk is unique up to the choice of initial vertex and direction, and is called the boundary walk of the face α (see [11], p. 101).

The degree of a vertex v or a face α, that is the number of edges incident with v or the length of the boundary walk of α, is denoted by $\operatorname{deg}(v)$ or $\operatorname{deg}(\alpha)$, respectively. A k-vertex is a vertex v with $\operatorname{deg}(v)=k$. By k^{+}or k^{-}we denote any integer not

[^0]smaller or not greater than k, respectively. Hence, a k^{+}-vertex v (resp. k^{+}-face α) satisfies $\operatorname{deg}(v) \geq k$ (resp. $\left.\operatorname{deg}(\alpha) \geq k\right)$ and k^{-}-vertex v (resp. k^{-}-face α) satisfies $\operatorname{deg}(v) \leq k$ (resp. $\operatorname{deg}(\alpha) \leq k$). The girth $g(G)$ of G is the length of a shortest cycle in G. A k-path is a path on k vertices $(k \geq 1)$. Let $w_{k}(G)=w_{k}$ be the minimum sum of degrees of vertices of a path on k vertices. A k-path on vertices v_{1}, \ldots, v_{k} is a path of type $\left(a_{1}, \ldots, a_{k}\right)$ or an $\left(a_{1}, \ldots, a_{k}\right)$-path if $\operatorname{deg}\left(v_{i}\right) \leq a_{i}$ for every $i \in\{1, \ldots, k\}$. The elements a_{1}, \ldots, a_{k} are called parameters of the type. The set S of types of paths is unavoidable for a family \mathcal{F} of graphs if each graph G from \mathcal{F} contains a path of the type from S. An unavoidable set S of types of paths is optimal for the family \mathcal{F} if neither the type can be omitted from S, nor any parameter of any type from S can be decreased.

In this paper we study unavoidable sets of types of 3-paths for families of planar graphs with minimum degree at least 2 and a given girth g. It is well known that every planar graph contains a vertex of degree at most 5 . When the girth of a planar graph increases, one can guarantee the existence of a vertex with a smaller degree: every planar graph with girth at least 4 (resp. 6) contains a vertex of degree at most 3 (resp. at most 2). Moreover, if the girth is at least $5 k+1(k \geq 1)$, then a planar graph contains either a vertex of degree 1 or a k-path consisting of k vertices of degree 2 [20]. It is then natural to ask a similar question for larger structures, for example, for (i, j)-paths or (i, j, k)-paths. Concerning the existence of (i, j)-paths (such paths are also called light edges, see [17]) in a normal plane map ${ }^{1}$, the effort of Lebesgue [19], Kotzig [18], Barnette [12] has flowed in the following theorem by Borodin [4]:

Theorem 1 (Borodin [4]). The set of types of 2-paths $\{(3,10),(4,7),(5,6)\}$ is optimal for the family of normal plane maps.
That result was then extended by Jendrol' and Maceková as follows:
Theorem 2 (Jendrol' and Maceková [14]). The set P_{g} is an optimal set of 2-paths for the family of plane graphs with minimum degree $\delta(G) \geq 2$ and girth $g(G) \geq g$ where
(i) $P_{5}=\{(2,5),(3,3)\}$,
(ii) $P_{6}=\{(2,5)\}$,
(iii) $P_{7}=\{(2,3)\}$,
(iv) $P_{11}=\{(2,2)\}$.

In plane graphs with $\delta(G) \geq 2$ and $g(G) \leq 4$ there can exist a 2-path of the type $(2, r)$ for arbitrary $r \in \mathbb{N}$ (see the graph $K_{2, r}$).

Now, consider (i, j, k)-paths. The main motivation for our research comes from the following results:
Theorem 3 (Franklin [10]). Every normal plane map G such that $\delta(G)=5$ contains a $(6,5,6)$-path.
Theorem 4 (Ando, Iwasaki, Kaneko [2]). Every 3-polytope ${ }^{2}$ satisfies $w_{3} \leq 21$, which is tight.
Theorem 5 (Jendrol' [13]). The set of types of 3-paths $\{(10,3,10),(7,4,7),(6,5,6),(3,4,15),(3,6,11),(3,8,5)$, $(3,10,3),(4,4,11),(4,5,7),(4,7,5)\}$ is unavoidable for the family of 3-polytopes.

Theorem 6 (Borodin, Ivanova, Jensen, Kostochka, Yancey [6]). The set of types of 3-paths $\{(3,3, \infty),(3,4,11),(3,7,5)$, $(3,10,4),(3,15,3),(4,4,9),(6,4,8),(6,5,6),(7,4,7)\}$ is optimal for the family of normal plane maps.

Theorem 7 (Borodin, Ivanova, Kostochka [7]). The set of types of 3-paths $S=\{(3,3, \infty),(3,4,11),(3,8,5),(3,10,4)$, $(3,15,3),(4,4,9),(4,7,4),(5,5,7),(6,4,7),(6,5,6)\}$ is optimal for the family of normal plane maps.

Theorems 6 and 7 provide two uncomparable optimal sets of types of 3-paths for the family of normal plane maps. In [7] there is formulated an interesting problem of determining the exact list of distinct optimal sets of types of 3-paths for given families of plane graphs. Borodin and Ivanova in [5] give seven mutually uncomparable optimal sets of types of 3-paths for triangle-free normal plane maps.

Theorem 8 (Borodin, Ivanova [5]). There exist precisely seven optimal sets of types of 3-paths for triangle-free normal plane maps:
(i) $\{(5,3,6),(4,3,7)\}$,
(ii) $\{(3,5,3),(3,4,4)\}$,
(iii) $\{(5,3,6),(3,4,3)\}$,
(iv) $\{(3,5,3),(4,3,4)\}$,
(v) $\{(5,3,7)\}$,
(vi) $\{(3,5,4)\}$,
(vii) $\{(5,4,6)\}$.

[^1]
https://daneshyari.com/en/article/4646676

Download Persian Version:

https://daneshyari.com/article/4646676

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: stanislav.jendrol@upjs.sk (S. Jendrol'), maria.macekova@student.upjs.sk (M. Maceková), mickael.montassier@lirmm.fr (M. Montassier), roman.sotak@upjs.sk (R. Soták).
 http://dx.doi.org/10.1016/j.disc.2015.10.016

[^1]: ${ }^{1}$ A normal plane map is a plane graph in which loops and multiple edges are allowed, but the degree of each vertex and face is at least three.
 2 3-polytopes are precisely 3-connected planar graphs (Steinitz's theorem).

