The existence spectrum for large sets of pure Hybrid triple systems ${ }^{\text {* }}$

Yuanyuan Liu*, Mingwei Nie
Department of Fundamental Science, North China Institute of Aerospace Engineering, Langfang 065000, PR China

ARTICLE INFO

Article history:

Received 2 May 2015
Received in revised form 9 October 2015
Accepted 9 October 2015
Available online 11 November 2015

Keywords:

Large set
Pure
Hybrid triple system

Abstract

An LPHTS (v) is a collection of $4(v-2)$ disjoint pure Hybrid triple systems on the same set of v elements. In Fan (2010), it is showed that there exists an $\operatorname{LPHTS}(v)$ for $v \equiv 0,4 \bmod 6$. In this paper, we establish the existence of an $\operatorname{LPHTS}(v)$ for $v \equiv 1,3 \bmod 6, v>3$. Finally, the spectrum for $L P H T S$ is completely determined.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a finite set. In what follows, an ordered pair of X is always an ordered pair (x, y), where $x \neq y \in X$. A cyclic triple $\langle x, y, z\rangle$ on X is a set of three ordered pairs $(x, y),(y, z)$ and (z, x) of X. A transitive triple (x, y, z) on X is a set of three ordered pairs $(x, y),(y, z)$ and (x, z) of X.

An oriented triple system of order v is a pair (X, \mathscr{B}) where X is a v-set and \mathscr{B} is a collection of oriented triples on X, called blocks, such that each ordered pair of X belongs to exactly one block of \mathcal{B}. If \mathscr{B} contains both cyclic triples and transitive triples, then (X, \mathscr{B}) is called a Hybrid triple system and denoted by $\operatorname{HTS}(v)$ which is firstly defined by Colbourn, Pulleyblank and Rosa in [1]. If the triples in \mathscr{B} are all cyclic (or transitive), then (X, \mathscr{B}) is called a Mendelsohn (or directed) triple system and denoted by MTS (v) (or DTS (v)). A holey Hybrid (or Mendelsohn, or directed) triple system HTS (v, w) (or MTS (v, w), or $D T S(v, w)$) is a trio (X, Y, \mathscr{B}) where X is a v-set, Y is its w-subset (called the hole), \mathscr{B} is a collection of both cyclic triples and transitive triples (or cyclic triples or transitive triples) of X such that each ordered pair of X but those on Y is exactly contained in one block of \mathscr{B} and no ordered pair of Y is contained in any block of \mathscr{B}.

An $\operatorname{HTS}(v)$ (or $\operatorname{HTS}(v, w)$) is called pure and denoted by $\operatorname{PHTS}(v)$ (or $\operatorname{PHTS}(v, w)$) if at most one triple in the set $\{(x, y, z),(y, z, x),(z, x, y),(z, y, x),(y, x, z),(x, z, y),\langle x, y, z\rangle,\langle z, y, x\rangle\}$ is contained in \mathfrak{B}. An MTS (v) (or MTS (v, w)) is called pure and denoted by PMTS (v) (or $\operatorname{PMTS}(v, w)$) if $\langle x, y, z\rangle \in \mathscr{B}$ implies $\langle z, y, x\rangle \notin \mathscr{B}$. A DTS (v) (or $D T S(v, w)$) is called pure and denoted by PDTS (v) (or $\operatorname{PDTS}(v, w)$) if $(x, y, z) \in \mathscr{B}$ implies $(z, y, x) \notin \mathscr{B}$.

A large set of $\operatorname{PHTS}(v) s$ (or PMTS $(v) s$ or $\operatorname{PDTS}(v) s$), denoted by $\operatorname{LPHTS}(v)$ (or $\operatorname{LPMTS}(v)$ or $\operatorname{LPDTS}(v)$), is a collection $\left\{\left(Y, \mathcal{A}_{i}\right)\right\}_{i}$ where Y is a v-set and each $\left(Y, \mathcal{A}_{i}\right)$ is a $\operatorname{PHTS}(v)$ (or PMTS (v) or $\operatorname{PDTS}(v)$) and these $\mathcal{A}_{i} S$ form a partition of all cyclic triples and transitive triples (or cyclic triples or transitive triples) on Y.

About the existence of the large sets of pure oriented triple system, there are the following known results.

[^0]
Lemma 1.1.

(1) [10] There exists an LPMTS (v) if and only if $v \equiv 0,1 \bmod 3, v \geq 4$ and $v \neq 6,7$.
(2) [9] There exists an $\operatorname{LPDTS}(v)$ if and only if $v \equiv 0,1 \bmod 3$ and $v \geq 4$.

In this paper, we focus on the existence of LPHTSs. Some preliminary researches on LPHTSs have been done. We list some known results as follows.

Lemma 1.2 ([2]). For odd v, if there exists an $\operatorname{LPHTS}(v+1)$, then there exists an $\operatorname{LPHTS}(3 v+1)$.
Lemma 1.3 ([3]).
(1) [Theorem 4.2.1] For $u \equiv 1,5 \bmod 6$ and $v>3$, if there exists an LPHTS $(v+2)$, then there exists an LPHTS $(u v+2)$;
(2) [Theorem 4.3.4] There exists an $\operatorname{LPHTS}(2 u+2)$ for $u \equiv 1,5 \bmod 6$;
(3) [Theorem 4.4.4] There exists an $\operatorname{LPHTS}\left(2^{n}+2\right)$ for $n \geq 1$ and $n \neq 4$.

Fan actually has given the existence of $\operatorname{LPHTS}(v)$ for $v \equiv 0,4 \bmod 6$ in [3]. If $v \equiv 0,4 \bmod 6$ and $v>0$, we can rewrite it as $v=2^{n} u+2$, where $u \equiv 1,5 \bmod 6$ and $n \geq 1$. If $n=1$, then there exists an $\operatorname{LPHTS}(2 u+2)$ by Lemma 1.3(2). If $n>1$, since there exists an $\operatorname{LPHTS}\left(2^{n}+2\right)$ by Lemma 1.3(3) and Lemma 3.1(1), there exists an $\operatorname{LPHTS}\left(2^{n} u+2\right)$ by Lemma 1.3(1). Thus, we have the following conclusion.

Lemma 1.4. There exists an LPHTS(v) for $v \equiv 0,4 \bmod 6$.

Lemma 1.5. There exists an LPHTS(v) only if $v \equiv 0,1 \bmod 3$ and $v>3$.
Proof. Let (Y, \mathcal{A}) be a $\operatorname{PHTS}(v)$ where Y is a v-set and \mathscr{A} is the block set, then \mathscr{A} contains $\frac{v(v-1)}{3}$ blocks. Thus, $3 \mid v(v-1)$. Evidently, there exists no $\operatorname{PHTS}(3)$. So, we get the necessary condition.

By Lemmas 1.4 and 1.5, in order to obtain the existence spectrum of LPHTSs, we only need to discuss the existence of $\operatorname{LPHTS}(v)$ for $v \equiv 1,3 \bmod 6$. In Section 2, we display some recursive constructions. In Sections 3-5, we discuss the existence of an $\operatorname{LPHTS}(v)$ for $v=6 k+3,12 k+7,12 k+1$ respectively. Especially, we get the existence of $\operatorname{LPHTS}(12 k+7)$ by using a PPHGDD to construct a PPHCS. Finally, the existence spectrum for LPHTSs is determined.

2. Recursive construction

In this section, we described some definitions and present some useful constructions. First, we introduce four definitions about HCS, PHGDD, t-PPHCS and $\operatorname{LPHTS}(v, w)$, where the definition of HCS is a simple modification to a candelabra t-system in [6].

A Hybrid candelabra system ($H C S$ for short) of order v is a quadruple $(X, S, \mathcal{G}, \mathcal{A})$ that satisfies the following properties:
(1) X is a set of v elements (called the points) and S is a s-subset (called the stem) of X;
(2) g is a collection of subsets (called the groups) of $X \backslash S$ which partition $X \backslash S$;
(3) $A \mathcal{A}$ is a family of cyclic triples and transitive triples (called the blocks) on X such that every cyclic triple $\langle a, b, c\rangle$ or transitive triple (a, b, c) on X with $|\{a, b, c\} \cap(S \cup G)|<3$ for any $G \in \mathcal{G}$ is contained in exactly one block, and for each $G \in \mathcal{G}$ no cyclic triple or transitive triple on $S \cup G$ is contained in any block.

The list $(\{|G|: G \in \mathcal{G}\}: s)$ is called type of the HCS. We also use the exponential notation to denote the type of g and separate the stem size by a colon.

For positive integers n_{i} and $g_{i}, 1 \leq i \leq r$, an $\operatorname{HGDD}\left(g_{1}^{n_{1}} \ldots g_{r}^{n_{r}}\right)$ (or $\operatorname{MGDD}\left(g_{1}^{n_{1}} \cdots g_{r}^{n_{r}}\right)$) is a trio $(X, \mathcal{G}, \mathcal{A})$ satisfying the following conditions: (1) X is a set containing $\sum_{i=1}^{r} n_{i} g_{i}$ points; (2) g is a partition of X, which consists of n_{i} subsets (called the groups) of cardinality g_{i}; (3) $A \mathcal{A}$ is a family of some cyclic triples and transitive triples (or some cyclic triples) of X (called the blocks) such that $|A \cap G| \leq 1, \forall A \in \mathcal{A}, G \in \mathcal{G}$ and each ordered pair on X from distinct (or the same) groups is contained in exactly one (or no) block.

An $\operatorname{HGDD}\left(g_{1}^{n_{1}} \cdots g_{r}^{n_{r}}\right)(X, \mathcal{G}, \mathcal{A})$ is called pure and denoted by $\operatorname{PHGDD}\left(g_{1}^{n_{1}} \cdots g_{r}^{n_{r}}\right)$ if at most one triple in the set $\{(x, y, z),(y, z, x),(z, x, y),(z, y, x),(y, x, z),(x, z, y),\langle x, y, z\rangle,\langle z, y, x\rangle\}$ is contained in \mathcal{A}. An $\operatorname{MGDD}\left(g_{1}^{n_{1}} \cdots g_{r}^{n_{r}}\right)(X, \mathcal{G}, \mathcal{A})$ is called pure and denoted by $\operatorname{PMGDD}\left(g_{1}^{n_{1}} \cdots g_{r}^{n_{r}}\right)$ if $\langle x, y, z\rangle \in \mathcal{A}$ implies $\langle z, y, x\rangle \notin \mathcal{A}$.

An special PMGDD can generate four disjoint PHGDDs. We have discussed the relation between them in [4], see Lemma 2.1 where the block-incident graph $G(\mathscr{B})$ for a $\operatorname{PMGDD}\left(g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \ldots g_{r}^{\alpha_{r}}\right)(X, \mathscr{B})$ is defined as follows: the vertex set is \mathfrak{B}, the vertices B and B^{\prime} are jointed by an edge if and only if $\left|B \cap B^{\prime}\right|=2$.

Lemma 2.1 ([4, Corollary 2.2]). Let G be the block-incident graph of a $\operatorname{PMGDD}\left(g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \ldots g_{r}^{\alpha_{r}}\right)$ and the block set is \mathcal{B}. If there exists a 2 -factor of G consisting of some disjoint circuits with even length no less than 4 and $|\mathscr{B}|>6$, then there exist four pairwise disjoint $\operatorname{PHGDD}\left(g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \cdots g_{r}^{\alpha_{r}}\right) \mathrm{s}$.

https://daneshyari.com/en/article/4646679

Download Persian Version:

https://daneshyari.com/article/4646679

Daneshyari.com

[^0]: Research supported by Natural Science Foundation for the Youth 11101003, 11501161, NSFC Grant 11171089.

 * Corresponding author.

 E-mail address: liuyuanyuan8209@163.com (Y. Liu).

