
Discrete Mathematics 339 (2016) 886–905

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Planar graphs without cycles of length 4 or 5 are
(2, 0, 0)-colorable✩

Ming Chen a,∗, Yingqian Wang b, Peipei Liu b, Jinghan Xu b

a College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

a r t i c l e i n f o

Article history:
Received 29 November 2014
Received in revised form 15 October 2015
Accepted 15 October 2015
Available online 12 November 2015

Keywords:
Steinberg’s conjecture
Improper coloring
Bad cycles
Super extension
Discharging

a b s t r a c t

Let d1, d2, . . . , dk be k nonnegative integers. A graph G = (V , E) is (d1, d2, . . . , dk)-
colorable, if the vertex set V ofG can be partitioned into subsets V1, V2, . . . , Vk such that the
subgraph G[Vi] induced by Vi hasmaximum degree at most di for i = 1, 2, . . . , k. Steinberg
conjectured that planar graphs without cycles of length 4 or 5 are (0, 0, 0)-colorable. Hill
et al. showed that every planar graph without cycles of length 4 or 5 is (3, 0, 0)-colorable.
In this paper, we show that planar graphs without cycles of length 4 or 5 are (2, 0, 0)-
colorable. For further study in this direction, someproblems and conjectures are presented.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, simple and undirected. The notation and terminology used but undefined in this
paper can be found in the book by Bondy and Murty [4].

Let G = (V , E) be a graph with the sets of vertices and edges V and E, respectively. A k-coloring of G is a mapping
φ : V −→ {1, 2, . . . , k} such that φ(u) ≠ φ(v) whenever uv ∈ E. G is said to be k-colorable if G admits a k-coloring. It is
well-known that (4CT) every planar graph is 4-colorable [2,3]; and (3CT) every triangle-free planar graph is 3-colorable [10].
For 3-colorability of planar graphs, an attractive central conjecture, proposed by Steinberg [4,17], says that every planar
graph without cycles of length 4 or 5 is 3-colorable.

As a relaxation of the Steinberg’s conjecture, Erdös [17] suggested to determine the minimum number k such that every
planar graph without cycles of length from 4 to k is 3-colorable. Abbott and Zhou [1] first showed that k ≤ 11. This bound
was later on improved to 9 by Borodin [5] and, independently, by Sanders and Zhao [16]; to 7 by Borodin et al. [6].

Another natural approach to attack the Steinberg’s conjecture seems to study the improper colorings (or defective colorings
in some earlier papers) of the planar graphs without cycles of length 4 or 5. Let d1, d2, . . . , dk be k nonnegative integers. A
(d1, d2, . . . , dk)-coloring of a graphG = (V , E) is amappingφ : V −→ {1, . . . , k} such that the subgraphG[Vi] induced by Vi
has maximum degree at most di, where Vi = {v ∈ V |φ(v) = i}. G is (d1, d2, . . . , dk)-colorable if it admits a (d1, d2, . . . , dk)-
coloring. Note that if G is (d1, d2, . . . , dk)-colorable, then it is (d′

1, d
′

2, . . . , d
′

k)-colorable, whenever 0 ≤ di ≤ d′

i for all
i = 1, 2, . . . , k.
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In terms of the general notion above, the four color theorem (4CT) may be restated as: every planar graph is (0, 0, 0, 0)-
colorable, and the Steinberg’s conjecture may be restated as: every planar graph without cycles of length 4 or 5 is (0, 0, 0)-
colorable. It is known that every planar graph is (2, 2, 2)-colorable [9]. Let F denote the family of planar graphs without
cycles of length 4 or 5. Motivated by the Steinberg’s conjecture, Lih et al. [14] showed that every graph in F is list (1, 1, 1)-
colorable, hence, (1, 1, 1)-colorable; Chang et al. [8] showed that every graph in F is (4, 0, 0)- and (2, 1, 0)-colorable.
Recently, Hill et al. [11] showed that every graph in F is (3, 0, 0)-colorable. Moreover, Hill and Yu [12], and independently,
Xu, Miao and Wang [25], showed that every graph in F is (1, 1, 0)-colorable. In this paper, we prove the following result.

Theorem 1. Every graph in F is (2, 0, 0)-colorable.

For other related papers on improper colorability of planar graphs with some forbidden cycles, we refer the readers
to [7–13,15,18–23,26].

The rest of this section is devoted to some definitions. A plane graph is an embedding of a planar graph in the plane so
that its edges only meet at their ends. Let G = (V , E, F) be a plane graph with the set of faces F . For a vertex v ∈ V , the
degree and the neighborhood of v are denoted by d(v) and N(v), respectively. Call a vertex v ∈ V a k-vertex, a k+-vertex, or
a k−-vertex if d(v) = k, d(v) ≥ k, or d(v) ≤ k, respectively. For a face f ∈ F , the set of vertices on f and the boundary walk
of f are denoted by V (f ) and b(f ), respectively. The size, or more preferably here, the degree of f , denoted by d(f ), is the
length of b(f ). The notions of a k-face, a k+-face, or a k−-face are defined analogous to the ones of a k-vertex, a k+-vertex, or
a k−-vertex, respectively. Call a face internal if it is not the unbounded face. Call a vertex external if it is on the unbounded
face; internal otherwise. For a face f ∈ F , the subgraph of G induced by V (f ) is denoted by G[V (f )]. If u1, u2, . . . , un are all
vertices of b(f ) in a cyclic order, then we write f = [u1u2 . . . un]. Two faces f and f ′ are intersecting if they have at least
one vertex in common; adjacent if they have at least one edge xy in common, and we usually denote f ′ by fxy when f and
f ′ are adjacent with edge xy in common. Let C be a cycle of G. The length of C , denoted |C |, is the number of edges of C . A
k-cycle is a cycle of length k. A facial 3-cycle, i.e., the boundary of a 3-face, is often called a triangle. A vertex or an edge is
called triangular if it is incident with a triangle. If edge uv is non-triangular, then u is called an isolated neighbor of v. The set
of vertices inside or outside a cycle C is denoted by int(C) or ext(C), respectively. Consequently, Int(C) = G − ext(C) and
Ext(C) = G − int(C) are two vertex-induced subgraphs of G. Note that the chords of C lying inside C belong to Ext(C). Call
a cycle C separating if both int(C) and ext(C) are not empty. Sometimes, we do not distinguish C with V (C) or E(C).

Let G = (V , E, F) be a plane graph without cycles of length 4 or 5, and C a cycle of length at most 9 in G. Call C bad if
Int(C) contains a subgraph H that is isomorphic to one of the configurations shown in Fig. 1, where C is the boundary of the
unbounded face of the subgraph H . The subgraph H is called a bad partition of Int(C), or simply C . Call a 9−-cycle good if it
is not bad. By the definition of a bad cycle, if a cycle C is bad then |C | = 8 or 9. Note that all 7−-cycles are good.

A chord of a cycle C or a path P is an edge that connects two non-consecutive vertices of C or P . Let e = xy be a chord of
a cycle C , and P1, P2 the two paths of C between x and y. If the length of the cycle Ci = Pi ∪ {e} is ki, i = 1, 2, then e is called
a (k1, k2)-chord of C . Since G has no cycles of length 4 or 5, the following remark is obvious.

Remark 1. Let C be a cycle in G.
(1) If |C | = 3, 6, then C has no chord.
(2) If |C | = 7, then C has at most one chord, if any, a (3, 6)-chord.
(3) If |C | = 8, then C has at most two chords, if any, a (3, 7)-chord.
(4) If |C | = 9, then C has at most three chords, if any, a (3, 8)-chord.

2. Proof of Theorem 1

As early as in 1959, the coloring extension argument was first successfully applied by Grötzsch [10] to prove the well-
known

Three Color Theorem. Every planar graph without 3-cycles is 3-colorable, i.e., (0, 0, 0)-colorable.

Combining classical coloring extension argument with improper (defective) coloring, Xu [24] introduced the notion of
super extension in improper colorings. In this paper, we will also employ the notion of super extension. Let G be a graph, H
an induced subgraph of G, and φ a (2, 0, 0)-coloring of H . We say that φ can be super extended to G if φ can be extended to
be a (2, 0, 0)-coloring of G, still denoted φ, so that φ(v) ≠ φ(u) whenever u ∈ V (H), v ∈ V (G) \ V (H) and uv ∈ E(G).

Instead of proving Theorem 1, we will by the next two sections prove a stronger result as follows:

Theorem 2. Let G = (V , E, F) be a plane graph without cycles of length 4 or 5. If D, the boundary of the unbounded face of G,
is a good cycle, then every (2, 0, 0)-coloring of G[V (D)] can be super extended to the whole graph G.

Assuming Theorem 2, we can easily derive Theorem 1:
Suppose to the contrary that Theorem 1 is false. Let G be a counterexample to Theorem 1 with the fewest vertices. By

the Three Color Theorem above, G has at least one 3-cycle C . Embed G into the plane. If C is a separating cycle of G, giving
a (2, 0, 0)-coloring of C , by the minimality of G, this (2, 0, 0)-coloring of C can be super extended to Ext(C) and Int(C)
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