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a b s t r a c t

A (c1, c2, . . . , ck)-coloring of G is a mapping ϕ : V (G) → {1, 2, . . . , k} such that for every
i, 1 ≤ i ≤ k, G[Vi] has maximum degree at most ci, where G[Vi] denotes the subgraph
induced by the vertices colored i. Borodin and Raspaud conjecture that every planar graph
without 5-cycles and intersecting triangles is (0, 0, 0)-colorable. We prove in this paper
that such graphs are (1, 1, 0)-colorable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graph coloring is one of the central topics in graph theory. A graph is (c1, c2, . . . , ck)-colorable if the vertex set can be
partitioned into k sets V1, V2, . . . , Vk, such that for every i : 1 ≤ i ≤ k the subgraph G[Vi] has maximum degree at most ci.
Thus a (0, 0, 0)-colorable graph is properly 3-colorable.

The problem of deciding whether a planar graph is properly 3-colorable is NP-complete. Significant research has been
devoted to finding conditions for a planar graph to be properly 3-colorable. The well-known Grötzsch Theorem [8] shows
that ‘‘triangle-free’’ suffices. The famous Steinberg Conjecture [13] proposes that ‘‘free of 4-cycles and 5-cycles’’ is also
enough.

Conjecture 1.1 (Steinberg, [13]). All planar graphs without 4-cycles and 5-cycles are 3-colorable.

Some relaxations of the Steinberg Conjecture are known to be true. Along the direction suggested by Erdős to find a
constant c such that a planar graph without cycles of length from 4 to c is 3-colorable, Borodin, Glebov, Raspaud, and
Salavatipour [4] showed that c ≤ 7, and more results similar to those can be found in the survey by Borodin [1]. An-
other direction of relaxation of the conjecture is to allow some defects in the color classes. Chang, Havet, Montassier, and
Raspaud [6] proved that all planar graphs without 4-cycles or 5-cycles are (2, 1, 0)-colorable and (4, 0, 0)-colorable. In
[10,11,16], it is shown that planar graphs without 4-cycles or 5-cycles are (3, 0, 0)- and (1, 1, 0)-colorable. Some more
results along this direction can be found in the papers by Wang et al. [16,17].

Havel [9] proposed that planar graphs with triangles far apart should be properly 3-colorable, which was confirmed in a
preprint of Dvořák, Král and Thomas [7]. Borodin and Raspaud [5] combined the ideas of Havel and Steinberg and proposed
the following so called Bordeaux Conjecture in 2003.
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Conjecture 1.2 (Borodin and Raspaud, [5]). Every planar graphwithout intersecting triangles andwithout 5-cycles is 3-colorable.

A planar graph without intersecting triangles means the distance between triangles is at least 1. Let d▽ denote the
smallest distance between any pair of triangles in a planar graph. A relaxation of the Bordeaux Conjecture with d▽

≥ 4 was
confirmedbyBorodin andRaspaud [5], and the resultwas improved to d▽

≥ 3byBorodin andGlebov [2] and, independently,
by Xu [14]. Borodin and Glebov [3] further improved the result to d▽

≥ 2.
Using the relaxed coloring notation, Xu [15] proved that all planar graphs without adjacent triangles and 5-cycles are

(1, 1, 1)-colorable, where two triangles are adjacent if they share an edge.
Let G be the family of plane graphs with d▽

≥ 1 and without 5-cycles. Yang and Yerger [18] showed that planar graphs
in G are (4, 0, 0)- and (2, 1, 0)-colorable, but there is a flaw in one of their key lemmas (Lemma 2.4). In [12], we showed
that graphs in G are (2, 0, 0)-colorable.

In this paper, wewill prove another relaxation of the Bordeaux Conjecture. Let G be a graph andH be a subgraph of G. We
call (G,H) to be superextendable if each (1, 1, 0)-coloring of H can be extended to G so that vertices in G − H have different
colors from their neighbors in H; in this case, we call H to be a superextendable subgraph.

Theorem 1.3. Every triangle or 7-cycle of a planar graph in G is superextendable.

As a corollary, we have the following relaxation of the Bordeaux Conjecture.

Theorem 1.4. A planar graph in G is (1, 1, 0)-colorable.

To see the truth of Theorem 1.4 byway of Theorem 1.3, wemay assume that the planar graph contains a triangle C sinceG
is (0, 0, 0)-colorable if G has no triangle. Then color the triangle, and by Theorem 1.3, the coloring of C can be superextended
to G. Thus, we get a coloring of G.

As many results with similar fashion, we use a discharging argument to prove Theorem 1.3. This argument consists of
two parts: structures and discharging. After introducing some common notation in Section 2, we show in Section 3 some
useful special structures in a minimal counterexample to the theorem, then in Section 4, we design a discharging process to
distribute the charges and use the special structures to reach a contradiction.

It should be noted that while the proof of our main theorem shares a lot of common properties with the (2, 0, 0) result
in [12], it ismuchmore involved.We have to extend some powerful tools from [15] by Xu, and discuss in detail the structures
around 4-vertices and 5-vertices. It would be interesting to know how to use the new tools developed in this paper to get
better results towards the Bordeaux Conjecture.

2. Preliminaries

In this section, we introduce some notation used in the paper.
Graphs mentioned in this paper are all simple. For a positive integer n, let [n] = {1, 2, . . . , n}. A k-vertex (k+-vertex,

k−-vertex) is a vertex of degree k (at least k, at most k). The same notation will apply to faces and cycles. We use b(f ) to
denote the vertex sets on f . We use F(G) to denote the set of faces in G. An (l1, l2, . . . , lk)-face is a k-face v1v2 . . . vk with
d(vi) = li, respectively. A face f is a pendant 3-face of vertex v if v is not on f but is adjacent to some 3-vertex on f . A pendant
neighbor of a 3-vertex v on a 3-face is the neighbor of v not on the 3-face.

Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote the sets of vertices located inside and outside C ,
respectively. The cycle C is called a separating cycle if int(C) ≠ ∅ ≠ ext(C), and is called a nonseparating cycle otherwise. We
still use C to denote the set of vertices of C .

Let S1, S2, . . . , Sl be pairwise disjoint subsets of V (G). We use G[S1, S2, . . . , , Sl] to denote the graph obtained from G by
identifying all the vertices in Si to a single vertex for each i ∈ {1, 2, . . . , l}.

A vertex v is properly colored if all neighbors of v have different colors from v. A vertex v is nicely colored if it shares a
color (say i) with at most max{si − 1, 0} neighbors, where si is the deficiency allowed for color i; thus if a vertex v is nicely
colored by a color i which allows deficiency si > 0, then an uncolored neighbor of v can be colored by i.

3. Special configurations

Let (G, C0) be a minimum counterexample to Theorem 1.3 with minimum σ(G) = |V (G)| + |E(G)|, where C0 is a
triangle or a 7-cycle in G that is precolored. For simplicity, let Fk = {f : f is a k-face and b(f ) ∩ C0 = ∅}, F ′

k = {f :

f is a k-face and |b(f ) ∩ C0| = 1}, and F ′′

k = {f : f is a k-face and |b(f ) ∩ C0| = 2}.
The following lemmas are shown in [12].

Proposition 3.1 (Prop 3.1 in [12]). (a) Every vertex not on C0 has degree at least 3.
(b) A k-vertex in G can have at most one incident 3-face.
(c) No 3-face and 4-face in G can have a common edge.

Lemma 3.2 (Lemma 3.2 in [12]). The graph G contains neither separating triangles nor separating 7-cycles.
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