Interval cyclic edge-colorings of graphs

P.A. Petrosyan ${ }^{\text {a,b,* }}$, S.T. Mkhitaryan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Informatics and Applied Mathematics, Yerevan State University, 0025, Armenia
${ }^{\mathrm{b}}$ Institute for Informatics and Automation Problems, National Academy of Sciences, 0014, Armenia

A R T I C L E I N F O

Article history:

Received 2 November 2014
Accepted 30 January 2016
Available online 2 March 2016

Keywords:

Edge-coloring
Interval coloring
Interval cyclic coloring
Bipartite graph
Complete graph

Abstract

A proper edge-coloring α of a graph G with colors $1, \ldots, t$ is called an interval cyclic t-coloring if all colors are used, and the colors of edges incident to each vertex v of G either form an interval of integers or the set $\{1, \ldots, t\} \backslash\{\alpha(e): e$ is incident to $v\}$ is an interval of integers. A graph G is interval cyclically colorable if it has an interval cyclic t-coloring for some positive integer t. The set of all interval cyclically colorable graphs is denoted by \mathfrak{N}_{c}. For a graph $G \in \mathfrak{N}_{c}$, the least and the greatest values of t for which it has an interval cyclic t-coloring are denoted by $w_{c}(G)$ and $W_{c}(G)$, respectively. In this paper we investigate some properties of interval cyclic colorings. In particular, we prove that if G is a trianglefree graph with at least two vertices and $G \in \mathfrak{N}_{c}$, then $W_{c}(G) \leq|V(G)|+\Delta(G)-2$. We also obtain some bounds on $w_{c}(G)$ and $W_{c}(G)$ for various classes of graphs. Finally, we give two methods for constructing of interval cyclically non-colorable graphs.

(C) 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected, and have no loops or multiple edges. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. For a graph G, the number of connected components of G is denoted by $c(G)$. A graph G is Eulerian if it has a closed trail containing every edge of G. The degree of a vertex $v \in V(G)$ is denoted by $d_{G}(v)$ (or $d(v)$), the maximum degree of G by $\Delta(G)$, the diameter of G by diam (G), and the chromatic index of G by $\chi^{\prime}(G)$. The terms and concepts that we do not define can be found in $[1,33]$.

A proper edge-coloring of a graph G with colors $1, \ldots, t$ is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G form an interval of integers. The concept of interval edge-coloring of graphs was introduced by Asratian and Kamalian [2]. In [2,3], the authors showed that if G admits an interval coloring, then $\chi^{\prime}(G)=\Delta(G)$. In $[2,3]$, they also proved that if a triangle-free graph G has an interval t-coloring, then $t \leq|V(G)|-1$. Later, Kamalian [14] showed that if G admits an interval t-coloring, then $t \leq 2|V(G)|-3$. This upper bound was improved to $2|V(G)|-4$ for graphs G with at least three vertices [9]. For an r-regular graph G, Kamalian and Petrosyan [19] showed that if G with at least $2 r+2$ vertices admits an interval t-coloring, then $t \leq 2|V(G)|-5$. For a planar graph G, Axenovich [4] showed that if G has an interval t-coloring, then $t \leq \frac{11}{6}|V(G)|$. In [13,14,25,28], interval colorings of complete graphs, complete bipartite graphs, trees, and n-dimensional cubes were investigated. The $N P$-completeness of the problem of the existence of an interval coloring of an arbitrary bipartite graph was shown in [30]. In [6,7,22,26,28,29], interval colorings of various products of graphs were investigated. In [1,3,7,8,10-12,17,18,20], the problem of the existence and construction of interval colorings was considered, and some bounds for the number of colors in such colorings of graphs were given.

[^0]A proper edge-coloring α of a graph G with colors $1, \ldots, t$ is called an interval cyclic t-coloring if all colors are used, and the colors of edges incident to each vertex v of G either form an interval of integers or the set $\{1, \ldots, t\} \backslash\{\alpha(e)$: e is incident to $v\}$ is an interval of integers. This type of edge-coloring under the name of " π-coloring" was first considered by Kotzig in [21], where he proved that every cubic graph has a π-coloring with 5 colors. However, the concept of interval cyclic edge-coloring of graphs was explicitly introduced by de Werra and Solot [5]. In [5], they proved that if G is an outerplanar bipartite graph, then G has an interval cyclic t-coloring for any $t \geq \Delta(G)$. In [23], Kubale and Nadolski showed that the problem of determining whether a given bipartite graph admits an interval cyclic coloring is NP-complete. Later, Nadolski [24] showed that if G admits an interval coloring, then G has an interval cyclic $\Delta(G)$-coloring. He also proved that if G is a connected graph with $\Delta(G)=3$, then G has an interval cyclic coloring with at most 4 colors. In [15,16], Kamalian investigated interval cyclic colorings of simple cycles and trees. For simple cycles and trees, he determined all possible values of t for which these graphs have an interval cyclic t-coloring.

In this paper we investigate some properties of interval cyclic colorings. In particular, we prove that if a triangle-free graph G with at least two vertices has an interval cyclic t-coloring, then $t \leq|V(G)|+\Delta(G)-2$. For various classes of graphs, we also obtain bounds on the least and the greatest values of t for which these graphs have an interval cyclic t-coloring. Finally, we describe some methods for constructing of interval cyclically non-colorable graphs.

2. Notations, definitions and auxiliary results

We use standard notations C_{n}, K_{n} and Q_{n} for the simple cycle, complete graph on n vertices and the hypercube, respectively. We also use standard notations $K_{m, n}$ and $K_{l, m, n}$ for the complete bipartite and tripartite graph, respectively, one part of which has m vertices, other part has n vertices and a third part has l vertices.

A partial edge-coloring of G is a coloring of some of the edges of G such that no two adjacent edges receive the same color. If α is a partial edge-coloring of G and $v \in V(G)$, then $S(v, \alpha)$ denotes the set of colors appearing on colored edges incident to v.

A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The set of all interval colorable graphs is denoted by \mathfrak{N}. For a graph $G \in \mathfrak{N}$, the least and the greatest values of t for which it has an interval t-coloring are denoted by $w(G)$ and $W(G)$, respectively.

A graph G is interval cyclically colorable if it has an interval cyclic t-coloring for some positive integer t. The set of all interval cyclically colorable graphs is denoted by \mathfrak{N}_{c}. For a graph $G \in \mathfrak{N}_{c}$, the least and the greatest values of t for which it has an interval cyclic t-coloring are denoted by $w_{c}(G)$ and $W_{c}(G)$, respectively. The feasible set $F_{c}(G)$ of a graph G is the set of all t 's such that there exists an interval cyclic t-coloring of G. The feasible set of G is gap-free if $F_{c}(G)=\left[w_{c}(G), W_{c}(G)\right]$. Clearly, if $G \in \mathfrak{N}$, then $G \in \mathfrak{N}_{c}$ and $\chi^{\prime}(G) \leq w_{c}(G) \leq w(G) \leq W(G) \leq W_{c}(G) \leq|E(G)|$.

For every positive integer t, let \mathbb{Z}_{t} denote the set $\{0, \ldots, t-1\}$ with addition modulo t (denoted by \oplus_{t}). A norm $\|\cdot\|_{t}$ in \mathbb{Z}_{t} given by $\|x\|_{t}=\min \{x, t-x\}$ for each $x \in \mathbb{Z}_{t}$. Let $\lfloor a\rfloor$ denote the largest integer less than or equal to a. For two positive integers a and b with $a \leq b$, we denote by $[a, b]$ the interval of integers $\{a, \ldots, b\}$. By $[a, b]_{\text {even }}\left([a, b]_{\text {odd }}\right)$, we denote the set of all even (odd) numbers from the interval $[a, b]$.

In [2,3], Asratian and Kamalian obtained the following two results.

Theorem 1. If $G \in \mathfrak{N}$, then $\chi^{\prime}(G)=\Delta(G)$. Moreover, if G is a regular graph, then $G \in \mathfrak{N}$ if and only if $\chi^{\prime}(G)=\Delta(G)$.

Theorem 2. If G is a connected triangle-free graph and $G \in \mathfrak{N}$, then $W(G) \leq|V(G)|-1$.
For general graphs, Kamalian proved the following

Theorem 3 ([14]). If G is a connected graph with at least two vertices and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)|-3$.
Note that the upper bound in Theorem 3 is sharp for K_{2}, but if $G \neq K_{2}$, then this upper bound can be improved.

Theorem 4 ([9]). If G is a connected graph with at least three vertices and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)|-4$.
In [31], Vizing proved the following well-known result.

Theorem 5. For every graph G,

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

https://daneshyari.com/en/article/4646704

Download Persian Version:

https://daneshyari.com/article/4646704

Daneshyari.com

[^0]: * Corresponding author at: Department of Informatics and Applied Mathematics, Yerevan State University, 0025, Armenia.

 E-mail addresses: pet_petros@ipia.sci.am (P.A. Petrosyan), sargismk@ymail.com (S.T. Mkhitaryan).

