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a b s t r a c t

We say thatG is an ordered graph if there is a linear ordering on the set of its vertices. In this
paper we count ordered graphs that avoid a fixed forbidden ordered subgraph. We forbid
each ordered graph with 2 edges and no isolated vertices. After a few trivial cases we show
a coding of linear subspaces of Fn

2 using colored M-avoiding graphs. We also consider the
connection between subspaces and their orthogonal complements. We show a bijection
between non-crossing and non-nesting graphs of order n and some other objects.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Extremal and enumerative problems form the two mainstream areas of combinatorics. Graph theoretical problems
(both extremal and enumerative) are crucial to classical results in [1,5] and to recent research directions. Recently many
classical questionswere proposedwhile also assuming that the underlying universe has an ordered component. For example
Davenport’s and Schinzel’s original extremal investigations of sequences were extended to matrices in [4] by Füredi and
Hajnal. Permutations with forbidden patterns were enumerated extensively. Several results were obtained in [2] by Bóna
and a major conjecture was proposed by R. P. Stanley and H. Wilf which was later solved in [12] by Marcus and Tardos. The
two directions turned out to be strongly interlaced as proved in [7] by Klazar. Enumerating perfect matchings of [2n] with
forbidden patterns led to interesting results and problems (see [11]).

A simple graph G with a linear ordering on the set of its vertices is called an ordered graph. In this paper we only
consider ordered graphs, so we usually just write ‘graph’ instead of ‘ordered graph’. We also assume that V (G) = [n],
where [n] = {1, . . . , n}. We say that G contains H iff there is an order-preserving mapping from V (H) to V (G) that maps the
edges of H into edges of G. We say that G avoids H if G does not contain H . The size of a graph H is the number of its edges
and the order of H is the number of its vertices. We denote the set of H-avoiding graphs on [n] by An(H).

By fixing H one can consider the set of ordered graphs with certain size or order that avoid H . Extremal and enumerative
questions about these sets have already been studied in the last few years. Many asymptotic results can be found in [10] by
Klazar. Pach and Tardos published about extremal results in [13].

Our goal is to determine the number of graphs that avoids a fixed subgraphH of a certain order.We choose the forbidden
graph H as each of the 6 ordered graphs with 2 edges that contain no isolated vertices.

In Section 2we consider some simple cases for the sake of completeness. In Section 3weworkwith theM graph (see Fig. 1
where all graphs considered in this paper are listed).We establish two bijections between certain vertex-coloredM-avoiding
graphs and linear subspaces of Fn

2. These bijections can be interpreted as codings of linear subspaces of Fn
2. These codings

reflect some linear algebraic properties of the subspace. For example we show how these codings behave with orthogonal
subspaces.
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Fig. 1. The set of ordered graphs containing 2 edges and no isolated vertices.

In Section 4 we show a size and order-preserving bijection between T -avoiding (non-nesting) and X-avoiding
(non-intersecting) graphs. It has already been known that non-nesting and non-intersecting graphs of the same order/size
have the same number (see [6,8,9]), but no bijective proof has been published so far. After the main result we extend the
bijections between non-nesting and non-crossing graphs to other families.

2. Warmup

Let {u, v} ∈ E(G) be an arbitrary edge. By (u, v) ∈ E(G)we mean that {u, v} ∈ G and u < v.
Let us consider the graph B first. We say that v is the right neighbor of u iff (u, v) ∈ E(G). This is equivalent to u being the

left neighbor of v. It is easy to see that G avoids B iff all vertices in G have at most 1 right neighbor. For vertex u this gives
n − u + 1 ways to choose right neighbors, and all these choices are independent. This means that there are exactly n! such
graphs. Similarly it can be shown that there are also n! graphs on [n] that avoid B′ by switching the words ‘left’ and ‘right’.

A less trivial case to consider is avoiding the I graph.
It is easy to see that G avoids I iff for every (u, v), (u′, v′) ∈ E(G) the intervals [u, v] and [u′, v′

] intersect. Using Helly’s
theorem this means that


(u,v)∈E(G)[u, v] ≠ ∅. Define Int(G) :=


(u,v)∈E(G)[u, v].

Proposition 1. For all n ≥ 0, |An(I)| = 1 +
n−1

i=1 (2
n−i

− 1) · 2(i−1)·(n−i+1).

Proof. Let G ∈ An(I) be arbitrary. If there are no edges in G then G is the empty graph, so there is only one such G.
If G has at least one edge then i := min Int(G). It is trivial that 1 ≤ i ≤ n − 1 always holds. There exists v ∈ V (G) for

which (i, v) ∈ E(G). It also holds that for all (u′, v′) ∈ E(G) : u′
≤ i ≤ v′. There are 2n−i

− 1 ways to choose the right
neighborhood of i, and 2(i−1)·(n−i+1) ways to choose edges which do not contain i as their left vertex. We can choose these
independently. Summing over i and counting the empty graph gives us the result. �

3. TheM-graph

Our next subject of study is the M-graph. Note that G avoids M iff there is no vertex which has both a left-neighbor and
a right-neighbor. By ⟨x1, x2, . . . , xn⟩ we mean the set {x1, x2, . . . , xn} while also assuming x1 < x2 < · · · < xn.

Proposition 2. M-avoiding graphs are bipartite.

Proof. Let G ∈ An(M) be arbitrary, and let R be the set of vertices inM which have a right neighbor. Let L be V (G)\R, the set
of vertices that are either isolated or have left neighbors. Let (i, j) ∈ E(G) be an arbitrary edge. Since i has a right neighbor j,
we know that i ∈ R. If j ∈ R, then j has both a left and a right neighbor too, which would be a contradiction. So j ∈ L. This
partition {R, L} of V (G) shows that G is bipartite. �

We say that (G, c) is a nicely colored M-avoiding graph if G ∈ An(M) and c : V (G) → {blue, red} is a proper 2-coloring,
which colors every vertex with a right neighbor blue. Note that this means that each vertex with a left neighbor is colored
red. Isolated vertices can get either color, independently. This means that for eachM-avoiding graph G there are 2m choices
of c to get a nice coloring of G, wherem is the number of isolated vertices. Let us denote the set of nicely coloredM-avoiding
graphs on [n] by Bn.

Proposition 3. For all n ≥ 0, |Bn| =
n

k=0

n
k


|Ak(M)|.

Proof. Choosing a nicely colored M-avoiding graph is equivalent to choosing a subset U of [n] (which contains the
non-isolated vertices and blue isolated vertices), and choosing an M-avoiding ordered graph G′ on U . There are

n
k


ways

to choose U , assuming U is a k-subset. For each choice there are |Ak(M)| ways to choose an M-avoiding ordered graph on
U . We can get a nicely colored M-avoiding graph by coloring each isolated vertex blue if it is contained in U , red otherwise.
Non-isolated vertices get blue color if they have right neighbors only, red otherwise. It is easy to see that when given a nicely
colored M-avoiding graph on [n], we can uniquely determine G′ and U .

The proposition follows by directly enumerating the ways to choose U and G′. �
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