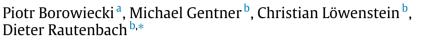
Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Independence in uniform linear triangle-free hypergraphs



^a Department of Algorithms and System Modeling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland

^b Institute of Optimization and Operations Research, Ulm University, D-89069 Ulm, Germany

ARTICLE INFO

Article history: Received 2 October 2014 Accepted 5 January 2016 Available online 1 February 2016

Keywords: Independence Hypergraph Linear Uniform Double linear Triangle-free

ABSTRACT

The independence number $\alpha(H)$ of a hypergraph H is the maximum cardinality of a set of vertices of H that does not contain an edge of H. Generalizing Shearer's classical lower bound on the independence number of triangle-free graphs Shearer (1991), and considerably improving recent results of Li and Zang (2006) and Chishti et al. (2014), we show that

$$\alpha(H) \ge \sum_{u \in V(H)} f_r(d_H(u))$$

for an *r*-uniform linear triangle-free hypergraph *H* with $r \ge 2$, where

$$f_r(0) = 1$$
, and
 $f_r(d) = \frac{1 + ((r-1)d^2 - d)f_r(d-1)}{1 + (r-1)d^2}$ for $d \ge 1$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite hypergraphs H, which are ordered pairs (V(H), E(H)) of two sets, where V(H) is the finite set of vertices of H and E(H) is the set of edges of H, which are subsets of V(H). The order n(H) of H is the cardinality of V(H). The degree $d_H(u)$ of a vertex u of H is the number of edges of H that contain u. The average degree d(H) of H is the arithmetic mean of the degrees of its vertices. Two distinct vertices of H are adjacent or neighbors if some edge of H contains both. The neighborhood $N_H(u)$ of a vertex u of H is the set of vertices of H that are adjacent to u. For a set X of vertices of H, the hypergraph H - Xarises from H by removing from V(H) all vertices in X and removing from E(H) all edges that intersect X. If every two distinct edges of H share at most one vertex, then H is linear. If H is linear and for every two distinct non-adjacent vertices u and v of H, every edge of H that contains u contains at most one neighbor of v, then H is double linear. If there are not three distinct vertices u_1, u_2 , and u_3 of H and three distinct edges e_1, e_2 , and e_3 of H such that $\{u_1, u_2, u_3\} \setminus \{u_i\} \subseteq e_i$ for $i \in \{1, 2, 3\}$, then H is triangle-free. A set I of vertices of H is a (weak) independent set of H if no edge of H is contained in I. The (weak) independence number $\alpha(H)$ of H is the maximum cardinality of an independent set of H. If all edges of H have cardinality r, then H is r-uniform. If H is 2-uniform, then H is referred to as a graph.

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.01.006 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: pborowie@eti.pg.gda.pl (P. Borowiecki), michael.gentner@uni-ulm.de (M. Gentner), christian.loewenstein@uni-ulm.de (C. Löwenstein), dieter.rautenbach@uni-ulm.de (D. Rautenbach).

The independence number of (hyper)graphs is a well studied computationally hard parameter. Caro [4] and Wei [14] proved a classical lower bound on the independence number of graphs, which was extended to hypergraphs by Caro and Tuza [5]. Specifically, for an r-uniform hypergraph H, Caro and Tuza [5] proved

$$\alpha(H) \geq \sum_{u \in V(H)} f_{CT(r)}(d_H(u)),$$

where $f_{CT(r)}(d) = {\binom{d+\frac{1}{d}}{d}}^{-1}$. Thiele [13] generalized Caro and Tuza's bound to general hypergraphs; see [3] for a very simple probabilistic proof of Thiele's bound. Originally motivated by Ramsey theory, Ajtai et al. [2] showed that $\alpha(G) = \Omega\left(\frac{\ln d(G)}{d(G)}n(G)\right)$ for every triangle-free graph *G*. Confirming a conjecture from [2] concerning the implicit constant, Shearer [11] improved this bound to $\alpha(H) \ge f_{S_1}(d(G))n(G)$, where $f_{S_1}(d) = \frac{d \ln d - d + 1}{(d-1)^2}$. In [11] the function f_{S_1} arises as a solution of the differential equation

$$(d+1)f(d) = 1 + (d-d^2)f'(d)$$
 and $f(0) = 1$.

In [12] Shearer showed that

$$\alpha(G) \geq \sum_{u \in V(G)} f_{S_2}(d_G(u))$$

for every triangle-free graph G, where f_{S_2} solves the difference equation

$$(d+1)f(d) = 1 + (d-d^2)(f(d) - f(d-1))$$
 and $f(0) = 1$

Since $f_{S_1}(d) \le f_{S_2}(d)$ for every non-negative integer d, and f_{S_1} is convex, Shearer's bound from [12] is stronger than his bound from [11].

Li and Zang [10] adapted Shearer's approach to hypergraphs and obtained the following.

Theorem 1 (*Li* and Zang [10]). Let r and m be positive integers with $r \ge 2$.

If H is an r-uniform double linear hypergraph such that the maximum degree of every subhypergraph of H induced by the neighborhood of a vertex of H is less than m, then

$$\alpha(H) \geq \sum_{u \in V(H)} f_{LZ(r,m)}(d_H(u)),$$

where

а

$$f_{LZ(r,m)}(x) = \frac{m}{B} \int_0^1 \frac{(1-t)^{\frac{m}{m}}}{t^b(m-(x-m)t)} dt,$$

= $\frac{1}{(r-1)^2}$, $b = \frac{r-2}{r-1}$, and $B = \int_0^1 (1-t)^{\left(\frac{a}{m}-1\right)} t^{-b} dt$.

Note that for $r \ge 2$, an *r*-uniform linear hypergraph *H* is triangle-free if and only if it is double linear and the maximum degree of every subhypergraph of *H* induced by the neighborhood of a vertex of *H* is less than 1. Therefore, since $f_{S_1} = f_{LZ(2,1)}$ and f_{S_1} is convex, Theorem 1 implies Shearer's bound from [11]. Nevertheless, since $f_{S_1}(d) < f_{S_2}(d)$ for every integer *d* with $d \ge 2$, Shearer's bound from [12] does not quite follow from Theorem 1.

In [6] Chishti et al. presented another version of Shearer's bound from [11] for hypergraphs.

Theorem 2 (Chishti et al. [6]). Let r be an integer with $r \ge 2$. If H is an r-uniform linear triangle-free hypergraph, then

j 11 is un r-unijorni incur triungic-jree hyp

$$\alpha(H) \ge f_{CZPI(r)}(d(H))n(H)$$

where

$$f_{CZPI(r)}(x) = \frac{1}{r-1} \int_0^1 \frac{1-t}{t^b (1-((r-1)x-1)t)} dt$$

and $b = \frac{r-2}{r-1}$.

Since $f_{S_1} = f_{CZPI(2)}$, for r = 2, the last result coincides with Shearer's bound from [11].

A drawback of the bounds in Theorems 1 and 2 is that they are very often weaker than Caro and Tuza's bound [5], which holds for a more general class of hypergraphs. See Fig. 1 for an illustration.

Download English Version:

https://daneshyari.com/en/article/4646707

Download Persian Version:

https://daneshyari.com/article/4646707

Daneshyari.com