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a b s t r a c t

A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. The
anti-Ramsey number ar(G,H) is the maximum number of colors in an edge-coloring of G
with no rainbow copy of H . Anti-Ramsey numbers were introduced by Erdős et al. (1973)
and studied in numerous papers. Originally a complete graph was considered as G, but
afterwards also other graphs were used as host graphs.

We consider a complete split graph as the host graph and discuss some results for the
graph H containing short cycles or triangles with pendant edges. Among others we show
that ar(Kn + Ks, C+

3 ) = ar(Kn + Ks, C3) = n + s − 1 for n, s ≥ 1, where C+

3 denotes a
triangle with a pendant edge.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For graphs G and H the anti-
Ramsey number ar(G,H) is themaximumnumber of colors in an edge-coloring ofGwith no rainbow copy ofH . Anti-Ramsey
numbers were introduced by Erdős et al. [6] and considered in the classical case when G = Kn. Since then numerous results
were established for a variety of graphs H , including among others cycles [1,15,18], matchings [7,11,19] and trees [14,16].
Later on different graphs were considered as a graph G, for instance bipartite graphs [3,17] or hypercubes [2]. The paper
of Fujita, Magnant and Ozeki [8] presents a survey of results in classical and nonclassical case. Very recently a set of
triangulations was placed as G [12,13].

In the paper we consider complete split graphs as the graph G and discuss some results concerning short cycles and
triangles with pendant edges. Among others we show that ar(Kn + Ks, C+

3 ) = ar(Kn + Ks, C3) = n + s − 1 for n, s ≥ 1,
where C+

3 denotes a triangle with a pendant edge.

2. Preliminaries

Graphs considered below will always be simple. Throughout the paper we use the standard graph theory notation (see,
e.g., [5]). In particular, G ∪ H , Kn, Cn, Pn and K1,r stand, respectively, for disjoint sum of graphs G and H , the complete graph,
the cycle, the path on n vertices and a star with r rays. A symbol K1,r + e denotes a star with one edge added. An edge of a
graph is called pendant if exactly one of its ends has the degree 1. For a graph G and its subgraph H by G − H we mean a
graph obtained from G by deleting all vertices of H . For a set S by |S| we denote the cardinality of S.

Additionally we introduce the following notation. C(G) is a set of colors used on the edges of a graph G; C(v) is a set of
colors used on the edges incident to a vertex v and c(e) denotes the color of the edge e.

A complete split graph Kn + Ks is a join of a complete graph Kn and an empty graph Ks. Throughout the paper V (Kn) =

{x1, x2, . . . , xn} = X and V (Ks) = {y1, y2, . . . , ys} = Y . We will also be referring to a bipartite graph Kn,s.
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We will also need the following theorem by Erdős, Simonovits, Sós.

Theorem 1 ([6]). Let n ≥ 3. Then ar(Kn, C3) = n − 1.

3. General observations

We start with some results which are not difficult to show but, due to their generality, can be used in more particular
cases.

Theorem 2. Let H be a graph with δ(H) ≥ 2. Then ar(Kn + Ks,H) ≥ ar(Kn,H) + s, for n, s ≥ 1.

Proof. To show this bound it is enough to color the edges of Kn from Kn + Ks with ar(Kn,H) colors avoiding rainbow H , and
then add smonochromatic stars (each in a new color) coming out from s vertices of Ks. �

As it will be shown later on this lower bound is sharp for instance for a triangle (see Corollary 3).

Theorem 3. If |V (H)| ≤ n and H is a subgraph of Kn,s then ar(Kn + Ks,H) ≤ ar(Kn,H) + ar(Kn,s,H).

Proof. Consider an arbitrary coloring of the edges of Kn + Ks with ar(Kn,H) + ar(Kn,s,H) + 1 colors. At least one of the
following inequalities is true |C(Kn)| ≥ ar(Kn,H) + 1 or |C(Kn,s)| ≥ ar(Kn,s,H) + 1 so we obtain a rainbow copy of H by
the definition of the anti-Ramsey number. �

The sharpness of this bound will be discussed in the next paragraph for a 4-cycle.

4. Cycles

Here we will present some results which we are able to derive for anti-Ramsey numbers for short cycles.

Corollary 1. Let 3 ≤ t ≤ min{n + s, 2n} = p. Then

ar(Kn + Ks, Ct) ≥


ar(Kn, Ct ) + s, 3 ≤ t ≤ n n
2


+ (n − 1)(t − n − 1) + s, n + 1 ≤ t ≤ p.

Proof. The first inequality is straightforward from Theorem 2. As for the second one we color the edges of Kn rainbowly,
add n(t − 1 − n) new colors on the edges of Kn,t−1−n and finally add s − (t − 1 − n) monochromatic stars, each in a new
color. �

We start with a triangle. The lower bound presented below is straightforward from Corollary 1 and Theorem 1. The upper
one is a consequence of the upper bound for a triangle with a pendant edge which is presented in Theorem 11 and occurs
to be the same.

Theorem 4. Let n ≥ 2, s ≥ 1 and n + s ≥ 3. Then ar(Kn + Ks, C3) = n + s − 1.

Next we consider a 4-cycle. It is the graph which fulfills the assumptions of Theorem 3 and that is why it seems to be
interesting since it can occur in a complete part of a complete split graph, in its bipartite part or somewhere in between. The
cases where the host graph is complete or complete bipartite are completely solved.

Theorem 5 ([1]). Let n ≥ 4. Then ar(Kn, C4) = ⌊
4n
3 ⌋ − 1.

Theorem 6 ([4]). Let n ≤ s and k ≥ 2. Then

ar(Kn,s, C2k) =


(k − 1)(n + s) − 2(k − 1)2 + 1 for n ≥ 2k − 1
(k − 1)s + n − (k − 1) for k − 1 ≤ n ≤ 2k − 1
sn for n ≤ k − 1.

Firstly we consider cases in which C4 is not a subgraph of a complete part.

Proposition 1. Let n ∈ {2, 3} and n + s ≥ 4. Then ar(Kn + Ks, C4) = ar(Kn,s, C4) + 1.

Proof. It is easy to see that the edge of K2 has no influence of appearing of (rainbow) C4 in K2 + Ks so it can be colored with
an additional color. Similarly in case n = 3 we can color the edges of K3,s with ar(Kn,s, C4) colors without rainbow C4 and
the edges of a triangle with one additional color to avoid a rainbow C4. On the other hand if we color the edges of Kn + Ks
with at least ar(Kn,s, C4) + 2 then at least two of them are used on the edges of Kn otherwise we have a rainbow C4 in Kn,s.
It is impossible in case n = 2. In case n = 3 note that there is at least one vertex yi ∈ Y such that |C(yi) \ C(K3)| ≥ 2. If this
rainbow path P3 has common leaves with a rainbow path P3 in K3 then we are done. If not, no matter of which color is the
edge yixk, where xk is the center of the monochromatic path in K3 we always obtain a rainbow C4. �

Next we show that if the assumptions of Theorem 3 are fulfilled then in case of C4 the upper bound can be decreased by 1.
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