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and studied in numerous papers. Originally a complete graph was considered as G, but
afterwards also other graphs were used as host graphs.

We consider a complete split graph as the host graph and discuss some results for the
graph H containing short cycles or triangles with pendant edges. Among others we show
that ar(K, + K;, Cf) = ar(K, + K;,C3) = n+s — 1forn,s > 1, where C5 denotes a
triangle with a pendant edge.
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1. Introduction

A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For graphs G and H the anti-
Ramsey number ar (G, H) is the maximum number of colors in an edge-coloring of G with no rainbow copy of H. Anti-Ramsey
numbers were introduced by Erdés et al. [6] and considered in the classical case when G = K. Since then numerous results
were established for a variety of graphs H, including among others cycles [1,15,18], matchings [7,11,19] and trees [ 14,16].
Later on different graphs were considered as a graph G, for instance bipartite graphs [3,17] or hypercubes [2]. The paper
of Fujita, Magnant and Ozeki [8] presents a survey of results in classical and nonclassical case. Very recently a set of
triangulations was placed as G [12,13].

In the paper we consider complete split graphs as the graph G and discuss some results concerning short cycles and
triangles with pendant edges. Among others we show that ar(K;,, + Kj, C3+) =ar(K, +K;,C3) =n+s—1forn,s > 1,
where C; denotes a triangle with a pendant edge.

2. Preliminaries

Graphs considered below will always be simple. Throughout the paper we use the standard graph theory notation (see,
e.g., [5]). In particular, G U H, K;, G, P, and K; , stand, respectively, for disjoint sum of graphs G and H, the complete graph,
the cycle, the path on n vertices and a star with r rays. A symbol K; ; 4 e denotes a star with one edge added. An edge of a
graph is called pendant if exactly one of its ends has the degree 1. For a graph G and its subgraph H by G — H we mean a
graph obtained from G by deleting all vertices of H. For a set S by |S| we denote the cardinality of S.

Additionally we introduce the following notation. C(G) is a set of colors used on the edges of a graph G; C(v) is a set of
colors used on the edges incident to a vertex v and c(e) denotes the color of the edgee.

A complete split graph K, + K; is a join of a complete graph K, and an empty graph K;. Throughout the paper V(K;) =
{x1,%2, ..., xp} =X and V(K;) = {¥1, Y2, - .., ¥s} = Y. We will also be referring to a bipartite graph K, .
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We will also need the following theorem by Erdés, Simonovits, Sés.

Theorem 1 ([6]). Let n > 3. Then ar(K,,, C3) =n — 1.

3. General observations

We start with some results which are not difficult to show but, due to their generality, can be used in more particular
cases.

Theorem 2. Let H be a graph with §(H) > 2. Then ar (K, + K;, H) > ar(K,, H) + s, for n,s > 1.

Proof. To show this bound it is enough to color the edges of K;, from K;, + K; with ar (Kn, H) colors avoiding rainbow H, and
then add s monochromatic stars (each in a new color) coming out from s vertices of K;,. O

As it will be shown later on this lower bound is sharp for instance for a triangle (see Corollary 3).

Theorem 3. If |V(H)| < nand H is a subgraph of K, s then ar (K, + K, H) < ar(K,, H) + ar(Kys, H).

Proof. Consider an arbitrary coloring of the edges of K, + K; with ar (K, H) + ar(Kys, H) + 1 colors. At least one of the
following inequalities is true |C(K,)| > ar(K,, H) + 1 or |C(Kns)| > ar(K,s, H) + 1 so we obtain a rainbow copy of H by
the definition of the anti-Ramsey number. O

The sharpness of this bound will be discussed in the next paragraph for a 4-cycle.

4. Cycles
Here we will present some results which we are able to derive for anti-Ramsey numbers for short cycles.

Corollary 1. Let 3 <t < min{n + s, 2n} = p. Then

— ar(Kn, C¢) +s, 3<t<n
ar([<n+I<S,CE)Z (;>+(n—1)(t—n—1)+s, n+1§t§p.

Proof. The first inequality is straightforward from Theorem 2. As for the second one we color the edges of K;, rainbowly,
add n(t — 1 — n) new colors on the edges of K;, ;—1—, and finally add s — (¢ — 1 — n) monochromatic stars, each in a new
color. O

We start with a triangle. The lower bound presented below is straightforward from Corollary 1 and Theorem 1. The upper
one is a consequence of the upper bound for a triangle with a pendant edge which is presented in Theorem 11 and occurs
to be the same.

Theorem 4. Letn > 2,s> landn+s > 3. Thenar(K, + K;, C3) =n+s— 1.

Next we consider a 4-cycle. It is the graph which fulfills the assumptions of Theorem 3 and that is why it seems to be
interesting since it can occur in a complete part of a complete split graph, in its bipartite part or somewhere in between. The
cases where the host graph is complete or complete bipartite are completely solved.

Theorem 5 ([1]). Let n > 4. Then ar (K,, C4) = | 4] — 1.

Theorem 6 ([4]). Let n < sand k > 2. Then

k=1DMn+s)—2(k=1D>+1 forn>2k—1
ar(Kns, Cox) = J (k= Ds+n—(k—1) fork—1<n<2k—1
sn forn<k-—1.

Firstly we consider cases in which Cy is not a subgraph of a complete part.

Proposition 1. Let n € {2, 3} and n + s > 4. Then ar (K, + K, C4) = ar (K5, C4) + 1.

Proof. It is easy to see that the edge of K, has no influence of appearing of (rainbow) C, in K5 + K; so it can be colored with
an additional color. Similarly in case n = 3 we can color the edges of K3 s with ar (K, s, C4) colors without rainbow C4 and
the edges of a triangle with one additional color to avoid a rainbow C,. On the other hand if we color the edges of K;, + K;
with at least ar (K, s, C4) + 2 then at least two of them are used on the edges of K;, otherwise we have a rainbow Cy4 in K, .
It is impossible in case n = 2. In case n = 3 note that there is at least one vertex y; € Y such that |C(y;) \ C(K3)| > 2.If this
rainbow path P; has common leaves with a rainbow path Ps in K3 then we are done. If not, no matter of which color is the
edge y;x, where xy is the center of the monochromatic path in K3 we always obtain a rainbow C4. O

Next we show that if the assumptions of Theorem 3 are fulfilled then in case of C4 the upper bound can be decreased by 1.
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