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a b s t r a c t

In 2010, the first author introduced a combinatorial model for Schur polynomials based
on labeled abaci. We generalize this construction to give analogous models for the
Hall–Littlewood symmetric polynomials Pλ, Qλ, and Rλ using objects called abacus-
tournaments. We introduce various cancellation mechanisms on abacus-tournaments to
obtain simpler combinatorial formulas and explain why these polynomials are divisible by
certain products of t-factorials. These tools are then applied to give bijective proofs of sev-
eral identities involving Hall–Littlewood polynomials, including the Pieri rule that expands
the product Pµek into a linear combination of Hall–Littlewood polynomials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Hall–Littlewood polynomials Pλ(x1, . . . , xN; t) are symmetric polynomials in the variables x1, . . . , xN that involve an
extra parameter t . These polynomials arose indirectly in Philip Hall’s study [5] of the subgroup lattices of finite abelian
p-groups; Littlewood later gave an explicit definition [7]. The Hall–Littlewood polynomials specialize to the Schur symmetric
polynomials sλ when t = 0, and they specialize to the monomial symmetric polynomials mλ when t = 1. The connection
to group theory arises as follows. Each product PµPν has a unique expansion


λ f λ

µ,ν(t)Pλ, where the structure constants
f λ
µ,ν(t) are polynomials in t with integer coefficients. If p is prime and M is a finite abelian p-group of type λ, then f λ

µ,ν(p
−1)

multiplied by an appropriate power of p counts the number of subgroups N ofM such that N has type µ andM/N has type
ν. Macdonald’s monograph [11, Ch. I—III] provides a thorough treatment of these topics from the algebraic viewpoint.

In the last decade or so, many researchers have worked to uncover the combinatorial significance of various symmetric
polynomials. A rich theory of tableau combinatorics has been developed to provide bijective explanations ofmany identities
involving Schur symmetric polynomials; see, for instance, the texts of Fulton [4], Sagan [12], or Stanley [13]. The vector
space of homogeneous symmetric polynomials of a fixed degree has many interesting bases, and the transition matrices
between these bases often encode important combinatorial information. This viewpoint is explored, for instance, in [1,3].
Some transition matrices involving Hall–Littlewood polynomials are studied in [10] using the combinatorics of starred
semistandard tableaux. Carbonara [2] developed a model for the transition matrix expanding Pλ in terms of the Schur
polynomials involving objects called special tournament matrices.

More recently, the first author [8] formulated a combinatorial model for antisymmetrized Schur polynomials based on
labeled abaci, which were inspired by the unlabeled abaci of James and Kerber [6]. This abacus model was used to give
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Fig. 1. Ferrers diagram of a partition.

short bijective proofs of results such as the Pieri rules for Schur polynomials, the Littlewood–Richardson rule, and the
equivalence of the algebraic definition and the combinatorial definition of Schur polynomials. Our goal in this paper is to
undertake an analogous study of antisymmetrized Hall–Littlewood polynomials using objects that combine labeled abaci
and tournaments.

We study three versions of Hall–Littlewood symmetric polynomials, denoted Pλ, Qλ, and Rλ, which can be turned into
antisymmetric polynomials bymultiplying by the Vandermonde determinant aδ(N) (see Section 2 for precise definitions).We
develop several combinatorial models for these antisymmetrized Hall–Littlewood polynomials as sums of signed, weighted
collections of abacus-tournaments. In particular, the concepts of global and local exponent collisions enable us to streamline
our initial model for aδ(N)Rλ in various ways by canceling pairs of objects with the same weight and opposite sign. To pass
from Rλ to Pλ or Qλ, we must also divide the polynomial by certain products of t-factorials. This division is explained
combinatorially by the notion of abacus-tournaments that are leading in certain positions, which is closely related to
Carbonara’s restriction to ‘‘special’’ tournaments in his work on the inverse t-Kostka matrix [2].

The second half of the paper uses our combinatorial models to give bijective proofs of some identities involving
Hall–Littlewood polynomials. The deepest result is an abacus-tournament proof of one of the Pieri rules, which tells how the
product of Pµ with an elementary symmetric function ek can be expanded as a linear combination of Pλ’s. We will see that
delicate interactions between various cancellation mechanisms provide an elegant bijective explanation of this algebraic
identity.

The paper is organized as follows. Section 2 recalls the definitions of Schur polynomials, Hall–Littlewoodpolynomials, and
ancillary combinatorial constructs. Section 3 defines abacus-tournaments and develops several models for aδ(N)Rλ. Section 4
builds up more combinatorial tools leading to formulas for aδ(N)Pλ and aδ(N)Qλ. Section 5 illustrates how these ideas can be
applied to prove somebasic identities involvingHall–Littlewoodpolynomials. Section 6 gives an abacus-tournament proof of
the Pieri rule for multiplying a Hall–Littlewood polynomial by ek. Section 7 indicates some planned future directions for this
line of research.We remark that all results in the current paper are based upon the second author’s doctoral dissertation [14].

2. Background

This section reviews the background material on partitions, permutations, and symmetric polynomials needed to define
Hall–Littlewood polynomials. More systematic expositions of this material may be found (for instance) in [9,11,13].

2.1. Partitions

A partition is a weakly decreasing sequence of nonnegative integers. For each positive integer N , let ParN be the set of
partitionsλ = (λ1, λ2, . . . , λN)with exactlyN parts, some ofwhichmay be zero. Givenλ ∈ ParN , let |λ| = λ1+λ2+· · ·+λN ,
and let ℓ(λ) be the number of nonzero parts of λ. For d ≥ 0, let ParN(d) = {λ ∈ ParN : |λ| = d}. Finally, given λ ∈ ParN
and an integer j ≥ 0, letmj(λ) be the number of parts of λ equal to j. For example, λ = (3, 3, 3, 1, 1, 1, 1, 0) is a partition in
Par8(13) with ℓ(λ) = 7,m0(λ) = 1,m1(λ) = 4,m3(λ) = 3, andmj(λ) = 0 for all other j.

We can visually represent a partition λ by its Ferrers diagram, which consists of N left-justified rows of boxes with λi
boxes in the ith row from the top. Our example partition has the diagram shown in Fig. 1. The vertical line in the last row
of the diagram corresponds to the part of size zero in λ; we include this line so that N (the number of parts) can be read off
from the figure.

For any partition λ ∈ ParN , we let λ′

j be the number of boxes in the jth column of the Ferrers diagram of λ. Also define
λ′

0 = N; then mj(λ) = λ′

j − λ′

j+1 for all j ≥ 0. Our example partition has λ′

0 = 8, λ′

1 = 7, λ′

2 = λ′

3 = 3, and λ′

j = 0 for all
j ≥ 4.

2.2. Permutations, t-factorials, and t-binomial coefficients

A permutation of the set [N] = {1, 2, . . . ,N} is a bijection w : [N] → [N]. The symmetric group SN is the set of
all permutations of [N] under the operation of function composition. We identify a permutation w ∈ SN with the word
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