Note

Adjacent vertex distinguishing total colorings of 2-degenerate graphs

Zhengke Miao ${ }^{\text {a }}$, Rui Shi ${ }^{\text {a }}$, Xiaolan Hu ${ }^{\text {b,* }}$, Rong Luo ${ }^{\text {c }}$
${ }^{\text {a S School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China }}$
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

ARTICLE INFO

Article history:

Received 29 July 2014
Received in revised form 21 March 2016
Accepted 22 March 2016
Available online 18 May 2016

Keywords:

Adjacent vertex distinguishing total
coloring
2-degenerate graph
Maximum degree

Abstract

Let ϕ be a proper total coloring of G. We use $C_{\phi}(v)=\{\phi(v)\} \cup\{\phi(u v) \mid u v \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident with v. An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that $C_{\phi}(u) \neq C_{\phi}(v)$ for any $u v \in E(G)$. The minimum number of colors required for an adjacent vertex distinguishing total coloring of G is denoted by $\chi_{a}^{\prime \prime}(G)$. In this paper we show that if G is a 2 -degenerate graph, then $\chi_{a}^{\prime \prime}(G) \leq \max \{\Delta(G)+2,6\}$. Moreover, we also show that when $\Delta \geq 5, \chi_{a}^{\prime \prime}(G)=\Delta(G)+2$ if and only if G contains two adjacent vertices of maximum degree. Our results imply the results on outerplanar graphs (Wang and Wang, 2010), K_{4}-minor free graphs (Wang and Wang, 2009) and graphs with maximum average degree less than 3 (Wang and Wang, 2008).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we only consider simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We use $d_{G}(v)$ to denote the degree of a vertex v in G. A k-vertex, k^{-}-vertex, k^{+}-vertex is a vertex of degree k, at most k, at least k, respectively. We call k-vertices, k^{+}-vertices adjacent to v k-neighbors, k^{+}-neighbors of v, respectively. Let $\Delta(G)$ be the maximum degree of G. If there is no confusion from the context we use simply Δ. To identify two vertices u and v of a graph G is to replace these vertices by a single vertex incident to all the edges which were incident in G to either u or v.

A proper total k-coloring is a mapping $\phi: V(G) \cup E(G) \longrightarrow\{1,2, \ldots, k\}$ such that any two adjacent or incident elements in $V(G) \cup E(G)$ receive different colors. The total chromatic number $\chi^{\prime \prime}(G)$ of G is the smallest integer k such that G has a total k-coloring. Let ϕ be a total coloring of G. We use $C_{\phi}(v)=\{\phi(v)\} \cup\{\phi(u v) \mid u v \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident with v. A proper total k-coloring ϕ of G is adjacent vertex distinguishing, or a total-k-avd-coloring, if $C_{\phi}(u) \neq C_{\phi}(v)$ whenever $u v \in E(G)$. The adjacent vertex distinguishing total chromatic number $\chi_{a}^{\prime \prime}(G)$ is the smallest integer k such that G has a total- k-avd-coloring. It is obvious that $\Delta+1 \leq \chi^{\prime \prime}(G) \leq \chi_{a}^{\prime \prime}(G)$. Note that if a graph G contains two adjacent vertices of maximum degree, then $\chi_{a}^{\prime \prime}(G) \geq \Delta+2$.

This coloring related to vertex-distinguishing proper edge colorings of graphs was first examined by Burris and Schelp [3] and was further discussed by many others, including Bazgan et al. [2] and Balister et al. [1]. This type of coloring was later extended to require only adjacent vertices to be distinguished by Zhang et al. [14], which was in turn extended to proper total colorings [13].

[^0]Zhang et al. [13] determined $\chi_{a}^{\prime \prime}(G)$ for some basic graphs such as paths, cycles, fans, wheels, trees, complete graphs, and complete bipartite graphs and made the following conjecture in terms of the maximum degree $\Delta(G)$.

Conjecture 1.1. For any graph $G, \chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.
Chen [4] and Wang [7], independently, confirmed Conjecture 1.1 for graphs G with $\Delta \leq 3$. Later, Hulgan [6] presented a more concise proof on this result. Wang and Huang [9] proved Conjecture 1.1 for planar graphs with $\Delta \geq 11$. Huang et al. [5] proved that $\chi_{a}^{\prime \prime}(G) \leq 2 \Delta$ in general.

A graph G is called K_{4}-minor free if G does not have K_{4} as a minor. A planar graph is said to be outerplanar if it has a plane embedding such that all vertices lie on the boundary of the unbounded face. Wang et al. considered the adjacent vertex distinguishing total chromatic number of K_{4}-minor free graphs [11] and outerplanar graphs [12].

Theorem 1.2. Let G be a K_{4}-minor free graph with $\Delta \geq 3$. Then $\Delta+1 \leq \chi_{a}^{\prime \prime}(G) \leq \Delta+2$ and $\chi_{a}^{\prime \prime}(G)=\Delta+2$ if and only if G contains two adjacent Δ-vertices.

Theorem 1.3. Let G be an outerplanar graph with $\Delta \geq 3$. Then $\Delta+1 \leq \chi_{a}^{\prime \prime}(G) \leq \Delta+2$ and $\chi_{a}^{\prime \prime}(G)=\Delta+2$ if and only if G contains two adjacent Δ-vertices.

The average degree of a graph G is $\frac{2|E(G)|}{|V(G)|}$. The maximum average degree, $\operatorname{mad}(G)$, of G is the maximum of the average degrees of its subgraphs. In [10], Wang proved the following theorem.

Theorem 1.4. Let G be a graph with $\operatorname{mad}(G)<3$.
(i) If $\Delta \geq 5$, then $\Delta+1 \leq \chi_{a}^{\prime \prime}(G) \leq \Delta+2$ and $\chi_{a}^{\prime \prime}(G)=\Delta+2$ if and only if G contains two adjacent Δ-vertices.
(ii) If $\Delta \leq 4$, then $\chi_{a}^{\prime \prime}(G) \leq 6$.

A graph G is called 2-degenerate if every subgraph of G contains a vertex of degree at most 2. Note that outerplanar graphs, K_{4}-minor free graphs and graphs with maximum average degree less than 3 are all 2-degenerate graphs. In [8], Wang et al. considered the adjacent vertex distinguishing edge colorings of 2-degenerate graphs.

In this paper, by taking a complete different approach, we prove the following result for 2-degenerate graphs which implies Theorem 1.4, and implies Theorems 1.2 and 1.3 partly. We also characterize the 2-degenerate graphs having $\chi_{a}^{\prime \prime}(G)=\Delta+2$ for $\Delta \geq 5$.

Theorem 1.5. Let G be a 2-degenerate graph. Then
(i) $\chi_{a}^{\prime \prime}(G) \leq 6$ if $\Delta \leq 4$.
(ii) $\chi_{a}^{\prime \prime}(G) \leq \Delta+2$ for $\Delta \geq 5$, and $\chi_{a}^{\prime \prime}(G)=\Delta+2$ if and only if G contains two adjacent Δ-vertices.

For a graph G, let $k(G)=\max \{\Delta+2,6\}$ if G contains two adjacent Δ-vertices and $k(G)=\max \{\Delta+1,6\}$ otherwise. Then $k(G) \geq 6$. Thus Theorem 1.5 is equivalent to the following theorem.

Theorem 1.6. Let G be a 2-degenerate graph. Then $\chi_{a}^{\prime \prime}(G) \leq k(G)$.

2. Proof of Theorem 1.6

Lemma 2.1 ([13]). Let P_{n} be a path of order $n \geq 2$ and C_{n} be a cycle of order $n \geq 3$. Then
(i) $\chi_{a}^{\prime \prime}\left(P_{n}\right)=3$ if $2 \leq n \leq 3$, and $\chi_{a}^{\prime \prime}\left(P_{n}\right)=4$ otherwise.
(ii) $\chi_{a}^{\prime \prime}\left(C_{n}\right)=5$ if $n=3$, and $\chi_{a}^{\prime \prime}\left(C_{n}\right)=4$ otherwise.

Proof of Theorem 1.6. Suppose to the contrary that G is a counterexample to Theorem 1.6 such that $|E(G)|$ is minimum. Then G is connected. If $\Delta=1$, then $G=P_{2}$. If $\Delta=2$, then G is a path or a cycle. By Lemma 2.1, we may assume that $\Delta \geq 3$. Denote $k=k(G)$ and $[k]=\{1,2, \ldots, k\}$ the set of colors.

Claim 2.1. For every subgraph H of G with $|E(H)|<|E(G)|$, H has a total-k-avd-coloring.
Proof of Claim 2.1. By the choice of G, for any subgraph H of G with $|E(H)|<|E(G)|, H$ has a total- $k(H)$-avd-coloring. Since $k(H) \leq k(G)=k$, then H has a total- k-avd-coloring.

Claim 2.2. No 2-vertex is adjacent to a 2^{-}-vertex.

https://daneshyari.com/en/article/4646744

Download Persian Version:

https://daneshyari.com/article/4646744

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zkmiao@jsnu.edu.cn (Z. Miao), xlh_2009@163.com (X. Hu), rluo@math.wvu.edu (R. Luo).

