Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Adjacent vertex distinguishing total colorings of 2-degenerate graphs

^a School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
^b School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
^c Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

Department of Mathematics, west virginia Oniversity, Morganiown, ww 20500, Onited State

ARTICLE INFO

Article history: Received 29 July 2014 Received in revised form 21 March 2016 Accepted 22 March 2016 Available online 18 May 2016

Keywords: Adjacent vertex distinguishing total coloring 2-degenerate graph Maximum degree

ABSTRACT

Let ϕ be a proper total coloring of *G*. We use $C_{\phi}(v) = \{\phi(v)\} \cup \{\phi(uv) \mid uv \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident with v. An adjacent vertex distinguishing total coloring of a graph *G* is a proper total coloring of *G* such that $C_{\phi}(u) \neq C_{\phi}(v)$ for any $uv \in E(G)$. The minimum number of colors required for an adjacent vertex distinguishing total coloring of *G* is denoted by $\chi_a''(G)$. In this paper we show that if *G* is a 2-degenerate graph, then $\chi_a''(G) \leq \max\{\Delta(G) + 2, 6\}$. Moreover, we also show that when $\Delta \geq 5$, $\chi_a''(G) = \Delta(G) + 2$ if and only if *G* contains two adjacent vertices of maximum degree. Our results imply the results on outerplanar graphs (Wang and Wang, 2010), K_4 -minor free graphs (Wang and Wang, 2009) and graphs with maximum average degree less than 3 (Wang and Wang, 2008).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we only consider simple graphs. Let *G* be a graph with vertex set V(G) and edge set E(G). We use $d_G(v)$ to denote the degree of a vertex v in *G*. A *k*-vertex, k^- -vertex, k^+ -vertex is a vertex of degree *k*, at most *k*, at least *k*, respectively. We call *k*-vertices, k^+ -vertices adjacent to v *k*-neighbors, k^+ -neighbors of v, respectively. Let $\Delta(G)$ be the maximum degree of *G*. If there is no confusion from the context we use simply Δ . To identify two vertices *u* and v of a graph *G* is to replace these vertices by a single vertex incident to all the edges which were incident in *G* to either *u* or *v*.

A proper total k-coloring is a mapping $\phi : V(G) \cup E(G) \longrightarrow \{1, 2, ..., k\}$ such that any two adjacent or incident elements in $V(G) \cup E(G)$ receive different colors. The total chromatic number $\chi''(G)$ of G is the smallest integer k such that G has a total k-coloring. Let ϕ be a total coloring of G. We use $C_{\phi}(v) = \{\phi(v)\} \cup \{\phi(uv) \mid uv \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident with v. A proper total k-coloring ϕ of G is adjacent vertex distinguishing, or a total-k-avd-coloring, if $C_{\phi}(u) \neq C_{\phi}(v)$ whenever $uv \in E(G)$. The adjacent vertex distinguishing total chromatic number $\chi''_{a}(G)$ is the smallest integer k such that G has a total-k-avd-coloring. It is obvious that $\Delta + 1 \leq \chi''(G) \leq \chi''_{a}(G)$. Note that if a graph G contains two adjacent vertices of maximum degree, then $\chi''_{a}(G) \geq \Delta + 2$.

This coloring related to vertex-distinguishing proper edge colorings of graphs was first examined by Burris and Schelp [3] and was further discussed by many others, including Bazgan et al. [2] and Balister et al. [1]. This type of coloring was later extended to require only adjacent vertices to be distinguished by Zhang et al. [14], which was in turn extended to proper total colorings [13].

* Corresponding author. E-mail addresses: zkmiao@jsnu.edu.cn (Z. Miao), xlh_2009@163.com (X. Hu), rluo@math.wvu.edu (R. Luo).

http://dx.doi.org/10.1016/j.disc.2016.03.019 0012-365X/© 2016 Elsevier B.V. All rights reserved.

Zhang et al. [13] determined $\chi_a''(G)$ for some basic graphs such as paths, cycles, fans, wheels, trees, complete graphs, and complete bipartite graphs and made the following conjecture in terms of the maximum degree $\Delta(G)$.

Conjecture 1.1. For any graph G, $\chi_a''(G) \leq \Delta(G) + 3$.

Chen [4] and Wang [7], independently, confirmed Conjecture 1.1 for graphs *G* with $\Delta \leq 3$. Later, Hulgan [6] presented a more concise proof on this result. Wang and Huang [9] proved Conjecture 1.1 for planar graphs with $\Delta \geq 11$. Huang et al. [5] proved that $\chi''_{\alpha}(G) \leq 2\Delta$ in general.

A graph *G* is called K_4 -minor free if *G* does not have K_4 as a minor. A planar graph is said to be outerplanar if it has a plane embedding such that all vertices lie on the boundary of the unbounded face. Wang et al. considered the adjacent vertex distinguishing total chromatic number of K_4 -minor free graphs [11] and outerplanar graphs [12].

Theorem 1.2. Let G be a K₄-minor free graph with $\Delta \ge 3$. Then $\Delta + 1 \le \chi_a''(G) \le \Delta + 2$ and $\chi_a''(G) = \Delta + 2$ if and only if G contains two adjacent Δ -vertices.

Theorem 1.3. Let G be an outerplanar graph with $\Delta \ge 3$. Then $\Delta + 1 \le \chi_a''(G) \le \Delta + 2$ and $\chi_a''(G) = \Delta + 2$ if and only if G contains two adjacent Δ -vertices.

The average degree of a graph *G* is $\frac{2|E(G)|}{|V(G)|}$. The maximum average degree, mad(*G*), of *G* is the maximum of the average degrees of its subgraphs. In [10], Wang proved the following theorem.

Theorem 1.4. Let G be a graph with mad(G) < 3.

(i) If $\Delta \ge 5$, then $\Delta + 1 \le \chi_a''(G) \le \Delta + 2$ and $\chi_a''(G) = \Delta + 2$ if and only if G contains two adjacent Δ -vertices. (ii) If $\Delta \le 4$, then $\chi_a''(G) \le 6$.

A graph *G* is called 2-*degenerate* if every subgraph of *G* contains a vertex of degree at most 2. Note that outerplanar graphs, K_4 -minor free graphs and graphs with maximum average degree less than 3 are all 2-degenerate graphs. In [8], Wang et al. considered the adjacent vertex distinguishing edge colorings of 2-degenerate graphs.

In this paper, by taking a complete different approach, we prove the following result for 2-degenerate graphs which implies Theorem 1.4, and implies Theorems 1.2 and 1.3 partly. We also characterize the 2-degenerate graphs having $\chi''_{\alpha}(G) = \Delta + 2$ for $\Delta \ge 5$.

Theorem 1.5. Let G be a 2-degenerate graph. Then

(i) $\chi_a''(G) \leq 6$ if $\Delta \leq 4$.

(ii) $\chi_{a}^{"'}(G) \leq \Delta + 2$ for $\Delta \geq 5$, and $\chi_{a}^{"}(G) = \Delta + 2$ if and only if G contains two adjacent Δ -vertices.

For a graph *G*, let $k(G) = \max{\{\Delta + 2, 6\}}$ if *G* contains two adjacent Δ -vertices and $k(G) = \max{\{\Delta + 1, 6\}}$ otherwise. Then $k(G) \ge 6$. Thus Theorem 1.5 is equivalent to the following theorem.

Theorem 1.6. Let *G* be a 2-degenerate graph. Then $\chi_a''(G) \leq k(G)$.

2. Proof of Theorem 1.6

Lemma 2.1 ([13]). Let P_n be a path of order $n \ge 2$ and C_n be a cycle of order $n \ge 3$. Then

(i) $\chi_a''(P_n) = 3$ if $2 \le n \le 3$, and $\chi_a''(P_n) = 4$ otherwise. (ii) $\chi_a''(C_n) = 5$ if n = 3, and $\chi_a''(C_n) = 4$ otherwise.

Proof of Theorem 1.6. Suppose to the contrary that *G* is a counterexample to Theorem 1.6 such that |E(G)| is minimum. Then *G* is connected. If $\Delta = 1$, then $G = P_2$. If $\Delta = 2$, then *G* is a path or a cycle. By Lemma 2.1, we may assume that $\Delta \ge 3$. Denote k = k(G) and $[k] = \{1, 2, ..., k\}$ the set of colors.

Claim 2.1. For every subgraph H of G with |E(H)| < |E(G)|, H has a total-k-avd-coloring.

Proof of Claim 2.1. By the choice of *G*, for any subgraph *H* of *G* with |E(H)| < |E(G)|, *H* has a total-*k*(*H*)-avd-coloring. Since $k(H) \le k(G) = k$, then *H* has a total-*k*-avd-coloring.

Claim 2.2. No 2-vertex is adjacent to a 2^- -vertex.

Download English Version:

https://daneshyari.com/en/article/4646744

Download Persian Version:

https://daneshyari.com/article/4646744

Daneshyari.com