Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Existence of rainbow matchings in strongly edge-colored graphs

Guanghui Wang^{a,*}, Guiying Yan^b, Xiaowei Yu^a

^a School of Mathematics, Shandong University, Jinan, 250100, China

^b Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 10080, China

ARTICLE INFO

Article history: Received 11 February 2016 Received in revised form 12 April 2016 Accepted 18 April 2016 Available online 18 May 2016

Keywords: Rainbow matchings Strongly edge-colored graphs Latin square

ABSTRACT

The famous Ryser Conjecture states that there is a transversal of size *n* in a latin square of odd order *n*, which is equivalent to finding a rainbow matching of size *n* in a properly edge-colored $K_{n,n}$ when *n* is odd. Let δ denote the minimum degree of a graph. In 2011, Wang proposed a more general question to find a function $f(\delta)$ ($f(\delta) \ge 2\delta + 1$) such that for each properly edge-colored graph of order $f(\delta)$, there exists a rainbow matching of size δ . The best bound so far is $f(\delta) \le 3.5\delta + 2$ due to Lo. Babu et al. considered this problem in strongly edge-colored graph of order at least $2\lfloor \frac{3\delta}{4} \rfloor$, then *G* has a rainbow matching of size $\lfloor \frac{3\delta}{4} \rfloor$. They proposed an interesting question: Is there a constant *c* greater than $\frac{3}{4}$ such that every strongly edge-colored graph *G* has a rainbow matching of size at least 2δ . If $|V(G)| \ge 2\lfloor c\delta \rfloor$? Clearly, $c \le 1$. We prove that if *G* is a strongly edge-colored graph with minimum degree δ and order at least $2\delta + 2$, then *G* has a rainbow matching of size δ . (2016 Elsevier B.V. All rights reserved.

1. Introduction

We use [5] for terminology and notations not defined here and consider simple undirected graphs only. Let G = (V, E) be a graph. For a subgraph H of G, let |H| denote the *order* of H, i.e. the number of vertices of H and let ||H|| denote the *size* of H, i.e. the number of edges of H. Let δ denote the *minimum degree* of a graph G and n = |G|.

A subgraph in an edge-colored graph is called *rainbow* if all its edges have distinct colors. Recently rainbow matchings in graphs and hypergraphs have been received much attention, see [1,2,4,11,12]. The study of rainbow matchings originates from the famous Ryser Conjecture [9], which states that there is a transversal of size *n* in a latin square of odd order *n*. Note that this problem is equivalent to finding a rainbow matching of size *n* in a properly edge-colored $K_{n,n}$ when *n* is odd. In [17], Wang proposed a more general question: Is there a function $f(\delta)$ such that every properly edge-colored graph of order $f(\delta)$ contains a rainbow matching of size δ ? Diemunsch et al. [6] showed that such function does exist and $f(\delta) \leq 98\delta/23$. Gyárfás and Sárközy [8] improved the result to $f(\delta) \leq 4\delta - 3$. Independently, Tan and Lo [15] showed that $f(\delta) \leq 4\delta - 4$ for $\delta \geq 4$. Now the best result is $f(\delta) \leq 3.5\delta + 2$ due to Lo [14]. In fact, he proved this result in the more general setting of color degree conditions, which have also been extensively studied, see [10,13,18].

Since lower bounds for the size of maximum rainbow matchings in properly edge-colored graphs have attracted much attention, it is natural to try to improve the lower bounds under stronger assumptions on the edge-coloring. A properly edge-colored graph is a graph such that every path of length 2 is rainbow. A strongly edge-colored graph is a graph such that

* Corresponding author. E-mail addresses: ghwang@sdu.edu.cn (G. Wang), yangy@amss.ac.cn (G. Yan), xwyu2013@163.com (X. Yu).

http://dx.doi.org/10.1016/j.disc.2016.04.016 0012-365X/© 2016 Elsevier B.V. All rights reserved.

Note

every path of length 3 is rainbow. The study of strong edge colorings of graphs is an active topic in coloring theory [7,16]. Rainbow matchings in strongly edge-colored graphs have an interpretation that seems to be intuitively closer to that of rainbow matchings in properly edge-colored graphs, than with the other strengthenings of proper coloring like acyclic edge-coloring and star edge-coloring. In [3], Babu et al. showed that if *G* is a strongly edge-colored graph of order at least $2\lfloor \frac{3\delta}{4} \rfloor$, then *G* has a rainbow matching of size $\lfloor \frac{3\delta}{4} \rfloor$, otherwise $\lfloor \frac{|V(G)|}{2} \rfloor$. They proposed an interesting question: Is there a constant *c* greater than $\frac{3}{4}$ such that every strongly edge-colored graph *G* has a rainbow matching of size at least $c\delta$ if $|V(G)| \ge 2\lfloor c\delta \rfloor$? Clearly, $c \le 1$. In this paper, we almost answer this question and prove the following result.

Theorem 1.1. If *G* is a strongly edge-colored graph with minimum degree δ and order at least $2\delta + 2$, then *G* has a rainbow matching of size δ .

2. Proof of main result

Firstly, when $\delta = 1$ and $\delta = 2$, the proof is trivial. So we assume that $\delta \ge 3$. We prove it by contradiction. If Theorem 1.1 is false, then there exists a minimal δ such that there is no rainbow matching of size δ in *G*. By the minimality of δ , *G* has a rainbow matching of size $\delta - 1$. Suppose that *M* is a rainbow matching of size $\delta - 1$ in *G*. Let c(e) denote the color of an edge *e* and C(H) denote the color set of *H*, where *H* is a subgraph of *G*. We call a color *new*, if it is not in C(M). Moreover, an edge with a new color is called a *new edge*. Let *T* denote the subgraph induced by V(G) - V(M). Note that $C(T) \subseteq C(M)$ otherwise we can get a rainbow matching of size δ . For a vertex v in *T*, let $d_T(v)$ denote the degree of v in *T* and $d_N(v)$ denote the number of new edges incident with v in *G*. For a vertex $v \in V(M)$, let $d_N(v) = |\{vu \mid u \in V(T), c(vu) \notin C(M)\}|$. A good triangle $T_M(v, xy)$ is a triangle vxyv such that $v \notin V(M)$, $xy \in E(M)$ and c(vx), $c(vy) \notin C(M)$.

Claim 2.1. Given a maximum rainbow matching M and any vertex v not in V(M), there exists a good triangle $T_M(v, e)$, where $e \in E(M)$.

Proof. We prove it by contradiction. Recall that if vx is a new edge, then $x \in V(M)$. Let vx be a new edge incident with v and $xy \in E(M)$. Since G is strongly edge-colored, v cannot be incident with an edge-colored by c(xy). Suppose that there exists no good triangle $T_M(v, e)$. There are $d_N(v)$ new edges incident with v, so there are at least $d_N(v)$ edges with colors in C(M) cannot be incident with v. Thus the number of edges with colors in C(M) and incident with v is at most $\delta - 1 - d_N(v)$. It follows that $d(v) \le d_N(v) + \delta - 1 - d_N(v) = \delta - 1 < d(v)$, which is a contradiction. \Box

Let $M = \{x_1y_1, x_2y_2, ..., x_{\delta-1}y_{\delta-1}\}$ and $V(T) = \{v_1, v_2, ..., v_t\}$. Since $n \ge 2\delta + 2$, it follows that $t \ge 4$.

Claim 2.2. For each edge $x_i y_i \in E(M)$, if $d_N(x_i) + d_N(y_i) \ge 3$, then $d_N(x_i) \times d_N(y_i) = 0$.

Proof. Otherwise, we can choose two new edges $x_i v$ and $y_i u$ such that $v, u \in V(T)$ and $v \neq u$. Since *G* is strongly edge-colored, $c(x_i v) \neq c(y_i u)$. Hence we get a rainbow matching $M \cup \{x_i v, y_i u\} - x_i y_i$ of size δ , which is a contradiction. \Box

By Claim 2.1, each vertex v_i has a good triangle $T_M(v_i, xy)$. Relabeling the edges of M, we can assume that the good triangles are $T_M(v_1, x_1y_1), \ldots, T_M(v_t, x_ty_t)$. (Recall that these good triangles are vertex-disjoint by Claim 2.2.) Let $M_1 = \{x_1y_1, \ldots, x_ty_t\}$ and $M_2 = M - M_1$. Let x_iy_i be an edge of M_2 . If $d_N(x_i) + d_N(y_i) \ge 3$, then we call x_iy_i a nice edge; (Note that $d_N(x_i) \times d_N(y_i) = 0$ by Claim 2.2, without loss of generality, we assume that $d_N(x_i) = 0$.) if $1 \le d_N(x_i) + d_N(y_i) \le 2$, then we call x_iy_i a good edge; otherwise, we call it a bad edge; if $c(x_iy_i) \in C(T)$, then we call it an old edge.

Claim 2.3. An old edge must be a bad edge.

Proof. Suppose our claim does not hold. Let $x_i y_i$ be an old but not bad edge. Then it should be adjacent to a new edge, without loss of generality, let $y_i w$ be a new edge where $w \in V(T)$. In addition, there is an edge $e \in E(T)$ such that $c(x_i y_i) = c(e)$. Recall that *G* is strongly edge-colored, *e* is not incident with *w*. So we get a rainbow matching $M \cup \{e, y_i w\} - x_i y_i$ of size δ , which is a contradiction. \Box

Claim 2.4. If $v \in V(T)$, then $d_N(v) \ge \frac{\delta}{2} + 1 - \frac{d_T(v)}{2}$.

Proof. Let $d_M(v)$ denote the number of edges vu such that $c(vu) \in C(M)$ and $u \in V(M)$. We know that $d(v) = d_N(v) + d_M(v) + d_T(v) \ge \delta$, so

$$d_N(v) \ge \delta - d_M(v) - d_T(v). \tag{2.1}$$

Since *G* is strongly edge-colored,

$$d_M(v) + d_T(v) \le \delta - 1 - \frac{d_N(v) + d_M(v)}{2}$$

It follows that

$$d_M(v) \le \frac{2(\delta - 1)}{3} - \frac{d_N(v)}{3} - \frac{2d_T(v)}{3}.$$
(2.2)

By combining (2.1) and (2.2), we have that $d_N(v) \ge \frac{\delta}{2} + 1 - \frac{d_T(v)}{2}$. \Box

Download English Version:

https://daneshyari.com/en/article/4646746

Download Persian Version:

https://daneshyari.com/article/4646746

Daneshyari.com