Note

Existence of rainbow matchings in strongly edge-colored graphs

Guanghui Wang ${ }^{\text {a,* }}$, Guiying Yan ${ }^{\text {b }}$, Xiaowei Yu ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, Shandong University, Jinan, 250100, China
${ }^{\mathrm{b}}$ Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 10080, China

A R T I C L E I N F O

Article history:

Received 11 February 2016
Received in revised form 12 April 2016
Accepted 18 April 2016
Available online 18 May 2016

Keywords:

Rainbow matchings
Strongly edge-colored graphs
Latin square

Abstract

The famous Ryser Conjecture states that there is a transversal of size n in a latin square of odd order n, which is equivalent to finding a rainbow matching of size n in a properly edge-colored $K_{n, n}$ when n is odd. Let δ denote the minimum degree of a graph. In 2011, Wang proposed a more general question to find a function $f(\delta)(f(\delta) \geq 2 \delta+1)$ such that for each properly edge-colored graph of order $f(\delta)$, there exists a rainbow matching of size δ. The best bound so far is $f(\delta) \leq 3.5 \delta+2$ due to Lo. Babu et al. considered this problem in strongly edge-colored graphs in which each path of length 3 is rainbow. They proved that if G is a strongly edge-colored graph of order at least $2\left\lfloor\frac{3 \delta}{4}\right\rfloor$, then G has a rainbow matching of size $\left\lfloor\frac{38}{4}\right\rfloor$. They proposed an interesting question: Is there a constant c greater than $\frac{3}{4}$ such that every strongly edge-colored graph G has a rainbow matching of size at least $c \delta$ if $|V(G)| \geq 2\lfloor c \delta\rfloor$? Clearly, $c \leq 1$. We prove that if G is a strongly edge-colored graph with minimum degree δ and order at least $2 \delta+2$, then G has a rainbow matching of size δ.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We use [5] for terminology and notations not defined here and consider simple undirected graphs only. Let $G=(V, E)$ be a graph. For a subgraph H of G, let $|H|$ denote the order of H, i.e. the number of vertices of H and let $\|H\|$ denote the size of H, i.e. the number of edges of H. Let δ denote the minimum degree of a graph G and $n=|G|$.

A subgraph in an edge-colored graph is called rainbow if all its edges have distinct colors. Recently rainbow matchings in graphs and hypergraphs have been received much attention, see [1,2,4,11,12]. The study of rainbow matchings originates from the famous Ryser Conjecture [9], which states that there is a transversal of size n in a latin square of odd order n. Note that this problem is equivalent to finding a rainbow matching of size n in a properly edge-colored $K_{n, n}$ when n is odd. In [17], Wang proposed a more general question: Is there a function $f(\delta)$ such that every properly edge-colored graph of order $f(\delta)$ contains a rainbow matching of size δ ? Diemunsch et al. [6] showed that such function does exist and $f(\delta) \leq 98 \delta / 23$. Gyárfás and Sárközy [8] improved the result to $f(\delta) \leq 4 \delta-3$. Independently, Tan and Lo [15] showed that $f(\delta) \leq 4 \delta-4$ for $\delta \geq 4$. Now the best result is $f(\delta) \leq 3.5 \delta+2$ due to Lo [14]. In fact, he proved this result in the more general setting of color degree conditions, which have also been extensively studied, see [10,13,18].

Since lower bounds for the size of maximum rainbow matchings in properly edge-colored graphs have attracted much attention, it is natural to try to improve the lower bounds under stronger assumptions on the edge-coloring. A properly edge-colored graph is a graph such that every path of length 2 is rainbow. A strongly edge-colored graph is a graph such that

[^0]every path of length 3 is rainbow. The study of strong edge colorings of graphs is an active topic in coloring theory [7,16]. Rainbow matchings in strongly edge-colored graphs have an interpretation that seems to be intuitively closer to that of rainbow matchings in properly edge-colored graphs, than with the other strengthenings of proper coloring like acyclic edge-coloring and star edge-coloring. In [3], Babu et al. showed that if G is a strongly edge-colored graph of order at least $2\left\lfloor\frac{3 \delta}{4}\right\rfloor$, then G has a rainbow matching of size $\left\lfloor\frac{3 \delta}{4}\right\rfloor$, otherwise $\left\lfloor\frac{|V(G)|}{2}\right\rfloor$. They proposed an interesting question: Is there a constant c greater than $\frac{3}{4}$ such that every strongly edge-colored graph G has a rainbow matching of size at least $c \delta$ if $|V(G)| \geq 2\lfloor c \delta\rfloor$? Clearly, $c \leq 1$. In this paper, we almost answer this question and prove the following result.
Theorem 1.1. If G is a strongly edge-colored graph with minimum degree δ and order at least $2 \delta+2$, then G has a rainbow matching of size δ.

2. Proof of main result

Firstly, when $\delta=1$ and $\delta=2$, the proof is trivial. So we assume that $\delta \geq 3$. We prove it by contradiction. If Theorem 1.1 is false, then there exists a minimal δ such that there is no rainbow matching of size δ in G. By the minimality of δ, G has a rainbow matching of size $\delta-1$. Suppose that M is a rainbow matching of size $\delta-1$ in G. Let $c(e)$ denote the color of an edge e and $C(H)$ denote the color set of H, where H is a subgraph of G. We call a color new, if it is not in $C(M)$. Moreover, an edge with a new color is called a new edge. Let T denote the subgraph induced by $V(G)-V(M)$. Note that $C(T) \subseteq C(M)$ otherwise we can get a rainbow matching of size δ. For a vertex v in T, let $d_{T}(v)$ denote the degree of v in T and $d_{N}(v)$ denote the number of new edges incident with v in G. For a vertex $v \in V(M)$, let $d_{N}(v)=|\{v u \mid u \in V(T), c(v u) \notin C(M)\}|$. A good triangle $T_{M}(v, x y)$ is a triangle $v x y v$ such that $v \notin V(M), x y \in E(M)$ and $c(v x), c(v y) \notin C(M)$.
Claim 2.1. Given a maximum rainbow matching M and any vertex v not in $V(M)$, there exists a good triangle $T_{M}(v, e)$, where $e \in E(M)$.
Proof. We prove it by contradiction. Recall that if $v x$ is a new edge, then $x \in V(M)$. Let $v x$ be a new edge incident with v and $x y \in E(M)$. Since G is strongly edge-colored, v cannot be incident with an edge-colored by $c(x y)$. Suppose that there exists no good triangle $T_{M}(v, e)$. There are $d_{N}(v)$ new edges incident with v, so there are at least $d_{N}(v)$ edges with colors in $C(M)$ cannot be incident with v. Thus the number of edges with colors in $C(M)$ and incident with v is at most $\delta-1-d_{N}(v)$. It follows that $d(v) \leq d_{N}(v)+\delta-1-d_{N}(v)=\delta-1<d(v)$, which is a contradiction.

Let $M=\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{\delta-1} y_{\delta-1}\right\}$ and $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$. Since $n \geq 2 \delta+2$, it follows that $t \geq 4$.
Claim 2.2. For each edge $x_{i} y_{i} \in E(M)$, if $d_{N}\left(x_{i}\right)+d_{N}\left(y_{i}\right) \geq 3$, then $d_{N}\left(x_{i}\right) \times d_{N}\left(y_{i}\right)=0$.
Proof. Otherwise, we can choose two new edges $x_{i} v$ and $y_{i} u$ such that $v, u \in V(T)$ and $v \neq u$. Since G is strongly edge-colored, $c\left(x_{i} v\right) \neq c\left(y_{i} u\right)$. Hence we get a rainbow matching $M \cup\left\{x_{i} v, y_{i} u\right\}-x_{i} y_{i}$ of size δ, which is a contradiction.

By Claim 2.1, each vertex v_{i} has a good triangle $T_{M}\left(v_{i}, x y\right)$. Relabeling the edges of M, we can assume that the good triangles are $T_{M}\left(v_{1}, x_{1} y_{1}\right), \ldots, T_{M}\left(v_{t}, x_{t} y_{t}\right)$. (Recall that these good triangles are vertex-disjoint by Claim 2.2.) Let $M_{1}=$ $\left\{x_{1} y_{1}, \ldots, x_{t} y_{t}\right\}$ and $M_{2}=M-M_{1}$. Let $x_{i} y_{i}$ be an edge of M_{2}. If $d_{N}\left(x_{i}\right)+d_{N}\left(y_{i}\right) \geq 3$, then we call $x_{i} y_{i}$ a nice edge; (Note that $d_{N}\left(x_{i}\right) \times d_{N}\left(y_{i}\right)=0$ by Claim 2.2, without loss of generality, we assume that $d_{N}\left(x_{i}\right)=0$.) if $1 \leq d_{N}\left(x_{i}\right)+d_{N}\left(y_{i}\right) \leq 2$, then we call $x_{i} y_{i}$ a good edge; otherwise, we call it a bad edge; if $c\left(x_{i} y_{i}\right) \in C(T)$, then we call it an old edge.

Claim 2.3. An old edge must be a bad edge.
Proof. Suppose our claim does not hold. Let $x_{i} y_{i}$ be an old but not bad edge. Then it should be adjacent to a new edge, without loss of generality, let $y_{i} w$ be a new edge where $w \in V(T)$. In addition, there is an edge $e \in E(T)$ such that $c\left(x_{i} y_{i}\right)=c(e)$. Recall that G is strongly edge-colored, e is not incident with w. So we get a rainbow matching $M \cup\left\{e, y_{i} w\right\}-x_{i} y_{i}$ of size δ, which is a contradiction.
Claim 2.4. If $v \in V(T)$, then $d_{N}(v) \geq \frac{\delta}{2}+1-\frac{d_{T}(v)}{2}$.
Proof. Let $d_{M}(v)$ denote the number of edges $v u$ such that $c(v u) \in C(M)$ and $u \in V(M)$. We know that $d(v)=$ $d_{N}(v)+d_{M}(v)+d_{T}(v) \geq \delta$, so

$$
\begin{equation*}
d_{N}(v) \geq \delta-d_{M}(v)-d_{T}(v) \tag{2.1}
\end{equation*}
$$

Since G is strongly edge-colored,

$$
d_{M}(v)+d_{T}(v) \leq \delta-1-\frac{d_{N}(v)+d_{M}(v)}{2}
$$

It follows that

$$
\begin{equation*}
d_{M}(v) \leq \frac{2(\delta-1)}{3}-\frac{d_{N}(v)}{3}-\frac{2 d_{T}(v)}{3} \tag{2.2}
\end{equation*}
$$

By combining (2.1) and (2.2), we have that $d_{N}(v) \geq \frac{\delta}{2}+1-\frac{d_{T}(v)}{2}$.

https://daneshyari.com/en/article/4646746

Download Persian Version:

https://daneshyari.com/article/4646746

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ghwang@sdu.edu.cn (G. Wang), yangy@amss.ac.cn (G. Yan), xwyu2013@163.com (X. Yu).

