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a b s t r a c t

The famous Ryser Conjecture states that there is a transversal of size n in a latin square
of odd order n, which is equivalent to finding a rainbow matching of size n in a properly
edge-colored Kn,n when n is odd. Let δ denote the minimum degree of a graph. In 2011,
Wang proposed a more general question to find a function f (δ) (f (δ) ≥ 2δ + 1) such that
for each properly edge-colored graph of order f (δ), there exists a rainbowmatching of size
δ. The best bound so far is f (δ) ≤ 3.5δ + 2 due to Lo. Babu et al. considered this problem in
strongly edge-colored graphs in which each path of length 3 is rainbow. They proved that
if G is a strongly edge-colored graph of order at least 2⌊ 3δ

4 ⌋, then G has a rainbowmatching
of size ⌊

3δ
4 ⌋. They proposed an interesting question: Is there a constant c greater than 3

4
such that every strongly edge-colored graph G has a rainbowmatching of size at least cδ if
|V (G)| ≥ 2⌊cδ⌋? Clearly, c ≤ 1. We prove that if G is a strongly edge-colored graph with
minimum degree δ and order at least 2δ + 2, then G has a rainbow matching of size δ.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We use [5] for terminology and notations not defined here and consider simple undirected graphs only. Let G = (V , E)
be a graph. For a subgraph H of G, let |H| denote the order of H , i.e. the number of vertices of H and let ∥H∥ denote the size
of H , i.e. the number of edges of H . Let δ denote theminimum degree of a graph G and n = |G|.

A subgraph in an edge-colored graph is called rainbow if all its edges have distinct colors. Recently rainbowmatchings in
graphs and hypergraphs have been received much attention, see [1,2,4,11,12]. The study of rainbow matchings originates
from the famous Ryser Conjecture [9], which states that there is a transversal of size n in a latin square of odd order n. Note
that this problem is equivalent to finding a rainbowmatching of size n in a properly edge-colored Kn,n when n is odd. In [17],
Wang proposed a more general question: Is there a function f (δ) such that every properly edge-colored graph of order f (δ)
contains a rainbow matching of size δ? Diemunsch et al. [6] showed that such function does exist and f (δ) ≤ 98δ/23.
Gyárfás and Sárközy [8] improved the result to f (δ) ≤ 4δ − 3. Independently, Tan and Lo [15] showed that f (δ) ≤ 4δ − 4
for δ ≥ 4. Now the best result is f (δ) ≤ 3.5δ + 2 due to Lo [14]. In fact, he proved this result in the more general setting of
color degree conditions, which have also been extensively studied, see [10,13,18].

Since lower bounds for the size of maximum rainbow matchings in properly edge-colored graphs have attracted much
attention, it is natural to try to improve the lower bounds under stronger assumptions on the edge-coloring. A properly
edge-colored graph is a graph such that every path of length 2 is rainbow. A strongly edge-colored graph is a graph such that
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every path of length 3 is rainbow. The study of strong edge colorings of graphs is an active topic in coloring theory [7,16].
Rainbow matchings in strongly edge-colored graphs have an interpretation that seems to be intuitively closer to that of
rainbow matchings in properly edge-colored graphs, than with the other strengthenings of proper coloring like acyclic
edge-coloring and star edge-coloring. In [3], Babu et al. showed that if G is a strongly edge-colored graph of order at least
2⌊ 3δ

4 ⌋, then G has a rainbow matching of size ⌊
3δ
4 ⌋, otherwise ⌊

|V (G)|

2 ⌋. They proposed an interesting question: Is there
a constant c greater than 3

4 such that every strongly edge-colored graph G has a rainbow matching of size at least cδ if
|V (G)| ≥ 2⌊cδ⌋? Clearly, c ≤ 1. In this paper, we almost answer this question and prove the following result.

Theorem 1.1. If G is a strongly edge-colored graph with minimum degree δ and order at least 2δ + 2, then G has a rainbow
matching of size δ.

2. Proof of main result

Firstly, when δ = 1 and δ = 2, the proof is trivial. So we assume that δ ≥ 3. We prove it by contradiction. If Theorem 1.1
is false, then there exists a minimal δ such that there is no rainbow matching of size δ in G. By the minimality of δ, G has
a rainbow matching of size δ − 1. Suppose that M is a rainbow matching of size δ − 1 in G. Let c(e) denote the color of an
edge e and C(H) denote the color set of H , where H is a subgraph of G. We call a color new, if it is not in C(M). Moreover,
an edge with a new color is called a new edge. Let T denote the subgraph induced by V (G) − V (M). Note that C(T ) ⊆ C(M)
otherwise we can get a rainbowmatching of size δ. For a vertex v in T , let dT (v) denote the degree of v in T and dN(v) denote
the number of new edges incident with v in G. For a vertex v ∈ V (M), let dN(v) = |{vu | u ∈ V (T ), c(vu) ∉ C(M)}|. A good
triangle TM(v, xy) is a triangle vxyv such that v ∉ V (M), xy ∈ E(M) and c(vx), c(vy) ∉ C(M).

Claim 2.1. Given a maximum rainbow matching M and any vertex v not in V (M), there exists a good triangle TM(v, e), where
e ∈ E(M).
Proof. We prove it by contradiction. Recall that if vx is a new edge, then x ∈ V (M). Let vx be a new edge incident with v and
xy ∈ E(M). Since G is strongly edge-colored, v cannot be incident with an edge-colored by c(xy). Suppose that there exists
no good triangle TM(v, e). There are dN(v) new edges incident with v, so there are at least dN(v) edges with colors in C(M)
cannot be incident with v. Thus the number of edges with colors in C(M) and incident with v is at most δ − 1 − dN(v). It
follows that d(v) ≤ dN(v) + δ − 1 − dN(v) = δ − 1 < d(v), which is a contradiction. �

LetM = {x1y1, x2y2, . . . , xδ−1yδ−1} and V (T ) = {v1, v2, . . . , vt}. Since n ≥ 2δ + 2, it follows that t ≥ 4.

Claim 2.2. For each edge xiyi ∈ E(M), if dN(xi) + dN(yi) ≥ 3, then dN(xi) × dN(yi) = 0.
Proof. Otherwise, we can choose two new edges xiv and yiu such that v, u ∈ V (T ) and v ≠ u. Since G is strongly
edge-colored, c(xiv) ≠ c(yiu). Hence we get a rainbowmatchingM ∪{xiv, yiu}− xiyi of size δ, which is a contradiction. �

By Claim 2.1, each vertex vi has a good triangle TM(vi, xy). Relabeling the edges of M , we can assume that the good
triangles are TM(v1, x1y1), . . . , TM(vt , xtyt). (Recall that these good triangles are vertex-disjoint by Claim 2.2.) Let M1 =

{x1y1, . . . , xtyt} andM2 = M − M1. Let xiyi be an edge ofM2. If dN(xi) + dN(yi) ≥ 3, then we call xiyi a nice edge; (Note that
dN(xi) × dN(yi) = 0 by Claim 2.2, without loss of generality, we assume that dN(xi) = 0.) if 1 ≤ dN(xi) + dN(yi) ≤ 2, then
we call xiyi a good edge; otherwise, we call it a bad edge; if c(xiyi) ∈ C(T ), then we call it an old edge.

Claim 2.3. An old edge must be a bad edge.
Proof. Suppose our claimdoes not hold. Let xiyi be an old but not bad edge. Then it should be adjacent to a new edge,without
loss of generality, let yiw be a new edge where w ∈ V (T ). In addition, there is an edge e ∈ E(T ) such that c(xiyi) = c(e).
Recall that G is strongly edge-colored, e is not incident with w. So we get a rainbow matching M ∪ {e, yiw} − xiyi of size δ,
which is a contradiction. �

Claim 2.4. If v ∈ V (T ), then dN(v) ≥
δ
2 + 1 −

dT (v)

2 .
Proof. Let dM(v) denote the number of edges vu such that c(vu) ∈ C(M) and u ∈ V (M). We know that d(v) =

dN(v) + dM(v) + dT (v) ≥ δ, so

dN(v) ≥ δ − dM(v) − dT (v). (2.1)

Since G is strongly edge-colored,

dM(v) + dT (v) ≤ δ − 1 −
dN(v) + dM(v)

2
.

It follows that

dM(v) ≤
2(δ − 1)

3
−

dN(v)

3
−

2dT (v)

3
. (2.2)

By combining (2.1) and (2.2), we have that dN(v) ≥
δ
2 + 1 −

dT (v)

2 . �
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