Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

S-packing colorings of cubic graphs

Nicolas Gastineau, Olivier Togni

LE2I UMR6306, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

a r t i c l e i n f o

Article history: Received 8 January 2016 Received in revised form 14 April 2016 Accepted 18 April 2016 Available online 18 May 2016

Keywords: Graph Coloring Packing chromatic number Cubic graph

1. Introduction

a b s t r a c t

Given a non-decreasing sequence $S = (s_1, s_2, \ldots, s_k)$ of positive integers, an *S-packing coloring* of a graph *G* is a mapping *c* from $V(G)$ to $\{s_1, s_2, \ldots, s_k\}$ such that any two vertices with the *i*th color are at mutual distance greater than s_i , $1 \le i \le k$. This paper studies *S*-packing colorings of (sub)cubic graphs. We prove that subcubic graphs are $(1, 2, 2, 2, 2, 2, 2)$ -packing colorable and $(1, 1, 2, 2, 2)$ -packing colorable. For subdivisions of subcubic graphs we derive sharper bounds, and we provide an example of a cubic graph of order 38 which is not $(1, 2, \ldots, 12)$ -packing colorable.

© 2016 Elsevier B.V. All rights reserved.

A proper coloring of a graph *G* is a mapping which associates a color (integer) to each vertex such that adjacent vertices get distinct colors. In such a coloring, the color classes are stable sets (1-packings). As an extension, a *d*-distance coloring of *G* is a proper coloring of the *d*th power *G ^d* of *G*, i.e. a partition of *V*(*G*) into *d*-packings (sets of vertices at pairwise distance greater than *d*). While Brook's theorem implies that all cubic graphs except the complete graph *K*⁴ of order 4 are properly 3-colorable, many authors studied 2-distance colorings of cubic graphs.

The aim of this paper is to study a mixing of these two types of colorings, i.e. colorings of (sub)cubic graphs in which some colors classes are 1-packings while other are *d*-packings, *d* ≥ 2. Such colorings can be expressed using the notion of *S*-packing coloring. For a non-decreasing sequence $S = (s_1, s_2, \ldots, s_k)$ of positive integers, an *S*-packing coloring (or simply *S*-coloring) of a graph *G* is a coloring of its vertices with colors from {*s*1, *s*2, . . . , *sk*} such that any two vertices with the *i*th color are at mutual distance greater than s_i , $1 \le i \le k$. The color class of each color s_i is thus an s_i -packing. The graph *G* is *S*-colorable if there exists an *S*-coloring and it is *S*-chromatic if it is *S*-colorable but not *S'*-colorable for any $S'=(s_1,s_2,\ldots,s_j)$ with *j* < *k* (notice that Goddard et al. [\[13\]](#page--1-0) define differently the *S*-chromaticness for infinite graphs).

A (*d*, . . . , *d*)-coloring is thus a *d*-distance *k*-coloring, where *k* is the number of *d* (see [\[16\]](#page--1-1) for a survey of results on this invariant) while a $(1, 2, \ldots, d)$ -coloring is a packing coloring. The packing chromatic number $\chi_{\rho}(G)$ of *G* is the integer *k* for which *G* is (1, . . . , *k*)-chromatic. This parameter was introduced by Goddard et al. [\[12\]](#page--1-2) under the name of *broadcast chromatic number* and the authors showed that deciding whether $\chi_{\rho}(G) \leq 4$ is NP-hard. A series of works [\[3](#page--1-3)[,6,](#page--1-4)[8,](#page--1-5)[9](#page--1-6)[,12,](#page--1-2)[18\]](#page--1-7) considered the packing chromatic number of infinite grids. For sequences *S* other than (1, 2, . . . , *k*), *S*-packing colorings were considered more recently [\[11,](#page--1-8)[14](#page--1-9)[,13\]](#page--1-0). Other papers are about the complexity class of the decision problem associated to the *S*-packing coloring problem [\[7](#page--1-10)[,10\]](#page--1-11).

Regarding subcubic graphs, the packing chromatic number of the hexagonal lattice and of the infinite 3-regular tree is 7 and at most 7, respectively. Recently, Brešar et al. [\[4\]](#page--1-12), have proven that the packing chromatic number of some cubic graphs, namely the base-3 Sierpiński graphs, is bounded by 9. Goddard et al. [\[12\]](#page--1-2) asked what is the maximum of the

<http://dx.doi.org/10.1016/j.disc.2016.04.017> 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail address: ngastineau87@gmail.com (N. Gastineau).

m and $n > 0$ and $n = 0$ and $n = 0$ and $n = 0$										
$n \setminus S$	(1, 2, 2, 2)	(1, 2, 2, 2, 2)	(1, 2, 2, 2, 2, 2)	(1, 2, 2, 2, 2, 2, 2)						
4				ŋ						
6										
8										
10	11									
12	11	74								
14	254	250	5							
16	1031	3017	12							
18	15960	25 29 7	44							
20	178 193	332045	251							
22	2481669	4835964	1814							

Table 1 Number of *S*-chromatic cubic graphs of order *n* up to 22.

|--|--|

Number of *S*-chromatic cubic graphs of order *n* up to 22.

Table 3

Number of cubic graphs of order *n* with packing chromatic number χ_{ρ} up to 20. *There are 55284 cubic graphs of order 20 and with packing chromatic number between 9 and 10 (our program takes too long time to compute their packing chromatic numbers).

$n\backslash \chi_{\rho}$	4	5	6			q	10	11
4		Ω	0		0	Ω	Ω	
6				0	0	Ω	Ω	
8	Ω			0	Ω	Ω	Ω	
10	Ω		15		0	Ω	Ω	
12	0		42	36	0	Ω	Ω	
14	Ω	13	252	222	22	0	0	
16	Ω	34	907	2685	433		0	
18	Ω	116	5277	21544	14050	314	Ω	
20	0	151	22098	206334	226622		55284*	

packing chromatic number of a cubic graph of order *n*. For 2-distance coloring of cubic graphs, Cranston and Kim have recently shown [\[5\]](#page--1-13) that any subcubic graph is (2, 2, 2, 2, 2, 2, 2, 2)-colorable (they in fact proved a stronger statement for list coloring). For planar subcubic graphs *G*, there are also sharper results depending on the girth of *G* [\[2](#page--1-14)[,5,](#page--1-13)[15\]](#page--1-15).

In this paper, we study *S*-packing colorings of subcubic graphs for various sequences *S* starting with one or two '1'. We also compute the distribution of *S*-chromatic cubic graphs up to 20 vertices, for three sequences *S*. The corresponding results are reported in [Tables 1–3.](#page-1-0) They are obtained by an exhaustive search, using the lists of cubic graphs maintained by Gordon Royle [\[17\]](#page--1-16). The paper is organized as follows: Section [2](#page--1-17) is devoted to the study of (1, *k*, . . . , *k*)-colorings of subcubic graphs for $k = 2$ or [3](#page--1-18); Section 3 to $(1, 1, 2, ...)$ -colorings; Section [4](#page--1-19) to $(1, 2, 3, ...)$ -colorings and Section [5](#page--1-20) concludes the paper by listing some open problems.

1.1. Notation

To describe an *S*-coloring, if an integer *s* is repeated in the sequence *S*, then we will denote the colors *s* by *sa*, *sb*,

The *subdivided graph S*(*G*) of a (multi)graph *G* is the graph obtained from *G* by subdividing each edge once, i.e. replacing each edge by a path of length two. In *S*(*G*), vertices of *G* are called *original* vertices and other vertices are called *subdivision* vertices. Let us call a graph *d-irregular* if it has no adjacent vertices of degree *d*. Notice that graphs obtained from subcubic graphs by subdividing each edge at least once are 3-irregular graphs.

The following method (that is inspired from that of Cranston and Kim [\[5\]](#page--1-13)) is used in the remainder of the paper to produce a desired coloring of a subcubic graph (except for [Theorem 3\)](#page--1-21): for a graph *G* and an edge $e = xy \in E(G)$, a *level ordering* of (G, e) is a partition of $V(G)$ into levels $L_i = \{v \in V(G) : d(v, e) = i\}$, $0 \le i \le \epsilon(e)$, with $\epsilon(e) = \max(\{d(u, e), u \in V(G)\}) \leq \text{diam}(G)$. The vertices are then colored one by one, from level $\epsilon(e)$ to 1, while preserving Download English Version:

<https://daneshyari.com/en/article/4646747>

Download Persian Version:

<https://daneshyari.com/article/4646747>

[Daneshyari.com](https://daneshyari.com)