Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A subset $D \subseteq V$ of a graph G = (V, E) is a (1, j)-set (Chellali et al., 2013) if every vertex $v \in$

 $V \setminus D$ is adjacent to at least 1 but not more than *j* vertices in *D*. The cardinality of a minimum

(1, j)-set of *G*, denoted as $\gamma_{(1,j)}(G)$, is called the (1, j)-domination number of *G*. In this paper,

using probabilistic methods, we obtain an upper bound on $\gamma_{(1,j)}(G)$ for $j \ge O(\log \Delta)$, where

 Δ is the maximum degree of the graph. The proof of this upper bound yields a randomized linear time algorithm. We show that the associated decision problem is NP-complete

for choral graphs but, answering a question of Chellali et al., provide a linear-time algorithm

for trees for a fixed *j*. Apart from this, we design a polynomial time algorithm for finding

 $\gamma_{(1,i)}(G)$ for a fixed j in a split graph, and show that (1, j)-set problem is fixed parameter

tractable in bounded genus graphs and bounded treewidth graphs.

© 2016 Elsevier B.V. All rights reserved.

Arijit Bishnu^a, Kunal Dutta^b, Arijit Ghosh^a, Subhabrata Paul^{a,*}

ABSTRACT

^a Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India ^b DataShape Group, INRIA Sophia Antipolis-Méditerranée, France

ARTICLE INFO

Article history: Received 9 December 2014 Received in revised form 4 April 2016 Accepted 5 April 2016 Available online 19 May 2016

Keywords: Domination (1, *j*)-set NP-completeness Probabilistic method Chordal graph

1. Introduction

Domination and its variants have been the most active areas of research in graph theory. The concept of (i, j)-set is a very interesting and recent variant of domination [6,8,19].

1.1. Definitions and notations

For a natural number *m*, let [m] denote the set $\{1, 2, ..., m\}$. Let G = (V, E) be a finite graph. For $v \in V$, let $N_G(v) = \{u | uv \in E\}$ denote the open neighborhood of v and $N_G[v] = N_G(v) \cup \{v\}$ denote the closed neighborhood of v. The degree of a vertex $v \in V$, is denoted as $d_G(v)$. Let Δ_G and δ_G denote the maximum and minimum degree of G. (We will remove the subscript G where it is obvious from the context). Let G[S] denote the subgraph induced by the vertex set S on G.

A vertex $u \in V$ is said to be dominated by a vertex $v \in V$ if $u \in N_G[v]$. A set $D \subseteq V$ is called a *dominating set* of *G* if for every vertex $v \in V \setminus D$, $|N_G(v) \cap D| \ge 1$. The cardinality of a minimum dominating set of *G* is called the *domination number* of *G* and is denoted by $\gamma(G)$. Note that, a dominating set *D* dominates each vertex of $V \setminus D$ at least once. If, for some positive integer *i*, a dominating set D_i dominates each vertex of $V \setminus D_i$ at least *i* times, then D_i is called a *i*-dominating set. A *restrained dominating set* is a set $D_r \subseteq V$ where every vertex in $V \setminus D_r$ is adjacent to a vertex in D_r as well as another vertex in $V \setminus D_r$. The cardinality of a minimum restrained dominating set of *G* is called the *restrained domination number* of *G*.

http://dx.doi.org/10.1016/j.disc.2016.04.008 0012-365X/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: arijit@isical.ac.in (A. Bishnu), duttkunal@gmail.com (K. Dutta), arijitiitkgpster@gmail.com (A. Ghosh), paulsubhabrata@gmail.com (S. Paul).

1.2. Short review on (i, j)-set

A set $D \subseteq V$ of a graph G = (V, E) is called a (i, j)-set if for every $v \in V \setminus D$, $i \leq |N_G(v) \cap D| \leq j$ for nonnegative integers i and j, that is, every vertex $v \in V \setminus D$ is adjacent to at least i but not more than j vertices in D. The decision version of (i, j)-set problem is defined as follows.

(i, j)-Set problem ((i, j)-SET)

Instance: A graph G = (V, E) and a positive integer $k \le |V|$. **Question:** Does there exist a (i, j)-set D of G such that $|D| \le k$?

The concept of (i, j)-set was introduced by Chellali et al. in [6]. In an earlier work, Dejter [8] defined *quasiperfect* domination—a set D is called a quasiperfect dominating set if all vertices in $V \setminus D$ are adjacent to either one or two vertices of D. By definition, a quasiperfect dominating set is basically a (1, 2)-set. Clearly, both are generalizations of the classical domination problem. Like domination problem, in this case, our goal is to find a (i, j)-set of minimum cardinality, which is called the (i, j)-domination number of G and is denoted by $\gamma_{(i,j)}(G)$. Basically, we are interested in finding a i-dominating set with a bounded redundancy. In these type of situations, we need the concept of (i, j)-set. Also, (i, j)-set is a more general concept which involves *nearly perfect set* [9], *perfect dominating set* [15] (also known as 1-*fair dominating set* [5]) etc. as variants. There is a concept of *set restricted domination* [2] which is defined as follows: for each vertex $v \in V$, we assign a set S_v . A set D_s is called a set restricted dominating set if for all $v \in V$, $|N_G[v] \cap D_S| \in S_v$. Note that if $S_v = [j]$ for all $v \in V$, we have a (1, j)-set. In that sense, (1, j)-set is a particular type of set restricted dominating set.

The concept of (i, j)-set, whose origin can be traced back to quasiperfect domination [8], has been introduced recently in 2013 [6]. To the best of our knowledge, only three papers have appeared on (i, j)-set or its variants [6,19,8]. The main focus of [6] is on a particular (i, j)-set, namely (1, 2)-set. In [6], the authors observed that for a simple graph *G* with *n* vertices, $\gamma(G) \leq \gamma_{(1,2)}(G) \leq n$. They showed that $\gamma(G) = \gamma_{(1,2)}(G)$ for claw-free graphs, P_4 -free graphs, caterpillars, etc. The authors have constructed a special type of split graph that achieves the upper bound. But they also showed that there are some graph classes for which $\gamma_{(1,2)}(G)$ is strictly less than *n*. The authors have also studied the (1, 3)-set for grid graphs and showed that $\gamma(G) = \gamma_{(1,3)}(G)$. Using this result, they also showed that domination number is equal to restrained domination number. From complexity point of view, it is known that (1, 2)-SET is NP-complete for bipartite graphs [6]. A list of open problems were posed in [6], some of which were solved in [19]. In [19], the authors showed that there exist planar and bipartite graphs with $\gamma_{(1,2)}(G) = n$. They also showed that for a tree *T* with *k* leaves, if $deg_G(v) \ge 4$ for any non-leaf vertex *v*, then $\gamma_{(1,2)}(T) = n - k$. Nordhaus–Gaddum-type inequalities are also established for (1, 2)-set in [19]. In [8], quasiperfect domination has been studied in triangular lattices.

The main focus of [6] and [19] is (1, 2)-set. In this paper, we study the more general set, namely (1, j)-set. Apart from the open problems mentioned in [6], a bound on the (1, j)-domination number for general graphs is important. A general bound for sufficiently large j (approximately, j is at least $O(\log \Delta)$) and its construction forms a major thrust of this paper, which is presented in Section 2. In Section 3, we tighten the hardness result by showing that (1, j)-set problem is NP-complete for chordal graphs. Section 4 focuses on algorithms for (1, j)-set problem. We propose a linear time algorithm for finding $\gamma_{(1,j)}(G)$ for a tree, a polynomial time algorithm for finding $\gamma_{(1,j)}(G)$ for a fixed j in a split graph, and fixed parameter tractable results for bounded genus graph and bounded treewidth graphs. Finally, Section 5 concludes the paper.

2. Upper bounds

In this section, we shall prove an upper bound on the (1, j)-domination number, i.e. $\gamma_{(1,j)}(G)$, of any graph G = (V, E), having minimum degree, δ and maximum degree, Δ , for *sufficiently large j*. Here the asymptotics are for *n* and Δ going to infinity *independently of each other*. Our result holds when *j* is sufficiently large as a function of Δ ($j \ge O(\log \Delta)$).

In [1], Alon and Spencer describe a similar upper bound on the domination number $\gamma(G)$, using probabilistic methods. Their strategy, a classic example of the 'alteration technique', was to select a random subset X of vertices as a partial dominating set, and then to include the set Y of vertices not dominated by X, to get the final dominating set. However, such a strategy is *a priori* not applicable for (1, j)-domination, because including or excluding vertices from the dominating set could change the number of dominating vertices adjacent to some vertex. Instead, we shall use a one-step process, and analyze it using the Lovász Local Lemma and Chernoff bounds, to ensure that the conditions for (1, j)-set hold. To use LLL, we need to bound the probability of the bad event, which is the event that a vertex is dominated more than *j* times. Intuitively, as *j* increases, this probability goes down. For this reason, the bound proved in this section is valid for large *j*, namely $j \ge O(\log \Delta)$. Our proof also implies a randomized linear time algorithm, using the Moser–Tardos constructive version of the Local Lemma [17].

We first state two well-known results, Chernoff bound and Lovász Local Lemma, in a form suitable for our purposes. These results can be found in any standard text on probabilistic combinatorics, e.g. [1].

Theorem 1 (*Chernoff Bound*). Suppose X is the sum of n independent random variables, each equal to 1 with probability p and 0 otherwise. Then for any $\alpha \ge 0$, Pr ($X > (1 + \alpha)np$) $< \exp(-f(\alpha)np)$, where $f(\alpha) = (1 + \alpha)\ln(1 + \alpha) - \alpha$.

Download English Version:

https://daneshyari.com/en/article/4646753

Download Persian Version:

https://daneshyari.com/article/4646753

Daneshyari.com