## Note

# An analogue of Franklin's Theorem 

O.V. Borodin ${ }^{\text {a }}$, A.O. Ivanova ${ }^{\mathrm{b}, *}$<br>${ }^{\text {a }}$ Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia<br>${ }^{\text {b }}$ Ammosov North-Eastern Federal University, Yakutsk, 677000, Russia

## ARTICLE INFO

## Article history:

Received 8 September 2015
Received in revised form 29 April 2016
Accepted 30 April 2016
Available online 25 May 2016

## Keywords:

Planar graph
Plane map
Structure properties
3-polytope
Weight


#### Abstract

Back in 1922, Franklin proved that every 3-polytope $P_{5}$ with minimum degree 5 has a 5 -vertex adjacent to two vertices of degree at most 6 , which is tight. This result has been extended and refined in several directions.

The purpose of this note is to prove that every $P_{5}$ has a vertex of degree at most 6 adjacent to a 5 -vertex and another vertex of degree at most 6 , which is also tight. Moreover, we prove that there is no tight description of 3-paths in $P_{5} \mathrm{~s}$ other than these two.


© 2016 Elsevier B.V. All rights reserved.

## 1. Introduction

The degree $d(x)$ of a vertex or face $x$ in a plane graph $G$ is the number of its incident edges. A $k$-vertex ( $k$-face) is a vertex (face) with degree $k$, a $k^{+}$-vertex has degree at least $k$, etc. The minimum vertex degree of $G$ is $\delta(G)$. We will drop the arguments whenever this does not lead to confusion.

A k-path is a path on $k$ vertices. A path $u v w$ is an $(i, j, k)$-path if $d(u) \leq i, d(v) \leq j$, and $d(w) \leq k$. The weight $w(H)$ of a subgraph $H$ of a graph $G$ is the degree-sum of the vertices of $H$ in $G$. By $\mathbf{P}_{\delta}$ denote the class of 3-polytopes with minimum degree $\delta$; in particular, $\mathbf{P}_{\mathbf{3}}$ is the set of all 3-polytopes.

In 1904, Wernicke [35] proved that if $P_{5} \in \mathbf{P}_{5}$ then $P_{5}$ contains a 5-vertex adjacent to a $6^{-}$-vertex. This result was strengthened by Franklin [19] in 1922 by proving the existence of a $(6,5,6)$-path in every $P_{5}$.

Theorem 1 (Franklin [19]). Every 3-polytope with minimum degree 5 has a (6, 5, 6)-path, which is tight.
We recall that a description of 3-paths is tight if none of its parameters can be strengthened and no term dropped. The tightness of Franklin's description is shown by putting a vertex inside each face of the dodecahedron and joining it to the five boundary vertices.

Franklin's Theorem 1 is fundamental in the structural theory of planar graphs; it has been extended or refined in several directions, see [1-18,20-24,26-34] and a survey Jendrol'-Voss [25].

We now mention only a few easily formulated results on $\mathbf{P}_{5}$, which are the closest to Franklin's Theorem and whose parameters are all sharp.

Borodin [3] proved that there is a 3 -face with weight at most 17. Jendrol' and Madaras [23] ensured a 5-vertex that has three neighbors whose weight sums to at most 18 and a 4-path with weight at most 23. Madaras [29] found a 5-path with weight at most 29.

[^0]

Fig. 1. A construction showing the tightness of Theorem 2.
All of a sudden, we have realized that the following fact, maybe the most similar to Franklin's Theorem, is missing in the literature.

Theorem 2. Every 3-polytope with minimum degree 5 has $a(5,6,6)$-path, which is tight.
Recently, we proved [11] that there exist precisely seven tight descriptions of 3-paths in triangle-free 3-polytopes.
Theorem 3 (Borodin and Ivanova [11]). There exist precisely seven tight descriptions of 3-paths in triangle-free 3-polytopes:
(i) $(5,3,6) \vee(4,3,7)$,
(ii) $(3,5,3) \vee(3,4,4)$,
(iii) $(5,3,6) \vee(3,4,3)$,
(iv) $(3,5,3) \vee(4,3,4)$,
(v) $(5,3,7)$,
(vi) $(3,5,4)$,
(vii) $(5,4,6)$.

Problem 4 (Borodin, Ivanova, and Kostochka [16]). Describe all tight descriptions of 3-paths in $\mathbf{P}_{\mathbf{3}}$.
Another purpose of our short note is to make the following modest contribution to Problem 4.
Theorem 5. There are no tight descriptions of 3-paths in $P_{5} s$ other than those given by Franklin's Theorem and Theorem 2.

## 2. Proving Theorem 2

To show the tightness of Theorem 2, it suffices to replace each face of the icosahedron by the configuration shown in Fig. 1. Indeed, the resulting graph $H_{2}$ has neither (5, 6, 5)-paths nor (5, 5, 6)-paths.

Now suppose that a 3-polytope $P_{5}^{\prime}$ contradicts Theorem 2 by avoiding $(5,6,6)$-paths. Let $P_{5}$ be a counterexample to Theorem 2 on the same vertices as $P_{5}^{\prime}$ having the most edges.

Let $v_{1}, \ldots, v_{d(x)}$ denote the neighbors of a vertex or a face $x$ in a cyclic order round $x$.
$\left({ }^{*}\right) P_{5}$ is a triangulation.
Indeed, suppose $P_{5}$ has a $4^{+}$-face $f=v_{1}, \ldots, v_{d(f)}$. If $d\left(v_{1}\right) \geq 6$ or $d\left(v_{3}\right) \geq 6$, then adding the diagonal $d=v_{1} v_{3}$ results in a counterexample $P_{5}^{*}$ to Theorem 2 with more edges since $d$ joins in $P_{5}^{*}$ two $7^{+}$-vertices, which contradicts the definition of $P_{5}$. Thus $d\left(v_{1}\right)=d\left(v_{3}\right)=5$ in $P_{5}$. By symmetry, we have also $d\left(v_{2}\right)=d\left(v_{4}\right)=5$. This means that $P_{5}$ has a ( $5,5,5$ )-paths, a contradiction.

Denote the sets of vertices, edges, and faces of $P_{5}$ by $V, E$ and $F$, respectively. Euler's formula $|V|-|E|+|F|=2$ for $P_{5}$ yields

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=-12 \tag{1}
\end{equation*}
$$

We assign an initial charge $\mu(v)=d(v)-6$ to each $v \in V$. Note that only 5 -vertices have a negative initial charge.
Using the properties of $G$ as a counterexample to Theorem 2, we will define a local redistribution of charges, preserving their sum, such that the new charge $\mu^{\prime}(v)$ is non-negative whenever $v \in V$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12 , and this contradiction will finish the proof of Theorem 2.

Namely, we use the following discharging rules.
R1. Every $6^{+}$-vertex gives $\frac{1}{4}$ to every adjacent 5 -vertex.
R2. Every $7^{+}$-vertex gives $\frac{1}{8}$ to every adjacent 6 -vertex.

# https://daneshyari.com/en/article/4646757 

Download Persian Version:
https://daneshyari.com/article/4646757

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova).

