The weight of faces in normal plane maps

O.V. Borodin ${ }^{\text {a }}$, A.O. Ivanova ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\mathrm{b}}$ Ammosov North-Eastern Federal University, Yakutsk 677000, Russia

ARTICLE INFO

Article history:

Received 20 April 2015
Received in revised form 30 April 2016
Accepted 30 April 2016
Available online 26 May 2016

Keywords:

Plane map
Planar graph
3-polytope
Structural properties
Weight

Abstract

The weight of a face in a 3-polytope is the degree-sum of its incident vertices, and the weight of a 3 -polytope, w, is the minimum weight of its faces. A face is pyramidal if it is either a 4 -face incident with three 3 -vertices, or a 3 -face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then w can be arbitrarily large, so we assume the absence of pyramidal faces in what follows.

In 1940, Lebesgue proved that every quadrangulated 3-polytope has $w \leq 21$. In 1995, this bound was lowered by Avgustinovich and Borodin to 20. Recently, we improved it to the sharp bound 18 .

For plane triangulations without 4 -vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that $w \leq 29$, which bound is sharp. Later, Borodin (1998) proved that $w \leq 29$ for all triangulated 3-polytopes. Recently, we obtained the sharp bound 20 for triangle-free polytopes.

In 1996, Horňák and Jendrol' proved for arbitrarily polytopes that $w \leq 32$. In this paper we improve this bound to 30 and construct a polytope with $w=30$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

By a 3-polytope we mean a finite convex 3-dimensional polytope. As proved by Steinitz [26], the 3-polytopes are in 1-1 correspondence with the 3-connected planar graphs.

A plane map is normal (NPM) if each of its vertices and faces is incident with at least three edges. Clearly, every 3-polytope is an NPM.

The degree $d(x)$ of a vertex or face x in an NPM M is the number of incident edges. A k-vertex or k-face is one of degree k, a k^{+}-vertex has degree at least k, a k^{-}-face has degree at most k, and so on.

The weight $w(f)$ of a face f in M is the degree-sum of its incident vertices. The weight $w(M)$ (or simply w) of a map M is the minimum weight of faces in M.

A 3-face is pyramidal if it is incident with at least two 4^{-}-vertices, and a 4-face is pyramidal if it is incident with at least three 3-vertices.

If M has pyramidal faces, then w can be arbitrarily large. Indeed, every face f of the Archimedean (3, 3, 3, n)- and (4, 4, n)solids satisfies $w(f) \geq n+8$. Therefore, speaking about w in what follows, we assume that NPMs have no pyramidal faces

We now recall some results about the structure of 5^{-}-faces in an NPM. By δ denote the minimum degree of vertices in M. We say that f is a face of type $\left(k_{1}, k_{2}, \ldots\right)$ or simply $\left(k_{1}, k_{2}, \ldots\right)$-face if the set of its incident vertices is majorized by the vector $\left(k_{1}, k_{2}, \ldots\right)$.

In 1940, Lebesgue [22] gave an approximated description of 5^{-}-faces in NPMs.

[^0]Theorem 1 (Lebesgue [22]). Every normal plane map has a 5^{-}-face of one of the following types:

```
(3, 6, \infty), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4,4, )), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5,6,7),
(3, 3, 3, \infty), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).
```

The classical Theorem 1, along with other ideas in Lebesgue [22], has numerous applications to coloring problems on plane graphs (first examples of such applications and a recent survey can be found in [7,24]). In 2002, Borodin [6] strengthened Theorem 1 in six parameters without worsening the others. However, the question in [6] of finding the best possible version(s) of Theorem 1 remains open, even for the special case of quadrangulations. Precise descriptions of 5^{-}faces are obtained for NPMs with $\delta=5$ (Borodin [2]) and $\delta \geq 4$ (Borodin-Ivanova [8]), and also for triangulations (Borodin, Ivanova, Kostochka [11]).

Some parameters of Lebesgue's Theorem were improved for special classes of plane graphs. In 1989, Borodin [2] proved, confirming Kotzig's conjecture [20] of 1963, that every normal plane map with $\delta=5$ has a ($5,5,7$)-face or ($5,6,6$)face, where all parameters are best possible. This result also confirmed Grünbaum's conjecture [15] of 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph so as to obtain two components each of which has a cycle) of every 5 -connected plane graph is at most 11 , which bound is sharp (earlier, Plummer [25] obtained the bound 13).

For the plane triangulations without 4-vertices, Kotzig [21] proved that $w \leq 39$, and Borodin [4] proved, confirming Kotzig's conjecture [21], that $w \leq 29$; this bound is best possible, as follows from the construction obtained from the icosahedron by twice inserting a 3-vertex into each face. Borodin [5] further showed that $w \leq 29$ for every triangulated 3-polytope.

In 1940, Lebesgue [22] proved that every quadrangulated 3-polytope satisfies $w \leq 21$. In 1995, this bound was improved in Avgustinovich-Borodin [1] to 20. Recently, we [9] improved this bound to the sharp bound 18, and for triangle-free polytopes we [10] recently obtained the best possible bound 20.

Borodin and Woodall [12], with the additional assumption of the absence of (3,5, ∞)-faces, proved that there is either a $(3,6,20)$-face or a 5^{-}-face of weight at most 25 , which bound is sharp. We note that the weight of all 5^{-}-faces can be at least 38 in the presence of $(3,5, \infty)$-faces (Horňák-Jendrol' [16]). On the other hand, Horňák and Jendrol' [16] proved that there is a 5^{-}-face f with $w(f) \leq 47$.

Other results related to Lebesgue's Theorem can be found in the above mentioned papers and also in $[18,13,3,14,17,19$, 23,27].

For arbitrary polytopes, Horňák and Jendrol' [16] (1996) proved that $w \leq 32$. The purpose of our paper is to improve this bound to $w \leq 30$ and construct a 3-polytope with $w=30$.

Theorem 2. Every normal plane map without pyramidal faces has a face of weight at most 30 , which bound is sharp.
Corollary 3. Every 3-polytope without pyramidal faces has a face of weight at most 30 , which bound is sharp.

2. Proving Theorem 2

The bound 30 is attained at the construction in Fig. 1 derived from the (3, 3, 3, 3, 5) Archimedean solid. Indeed, we put the inserts presented on the left in Fig. 1 into each face of the (3, 3, 3, 3, 5) Archimedean solid, in which every vertex is incident with four triangles and a pentagon. As a result, we have a 3-polytope such that every 3 -face is incident with a 22 -vertex, and so it has weight at least 30 , while each 10 -face has weight 40.

Now let a normal plane map M^{\prime} be a counterexample to the upper bound in Theorem 2 . Starting from M^{\prime}, we construct a counterexample M with some useful properties.

The operation $H D_{u w}$ consists in putting a diagonal $u w$ into a 4^{+}-face f to split f into two non-pyramidal faces. For example, $H D_{u w}$ works if $d(u) \geq 22$ and $d(w) \geq 4$, since it neither creates pyramidal faces, nor produces faces of weight less than $22+1+4+1+3=31$. Other possibilities of applying $H D_{u w}$ will be given below.

We apply $H D_{u w}$ to M^{\prime} as many times as possible; this results in a counterexample M.

2.1. Basic structural properties of the counterexample M

(P1) M has no 6^{+}-face incident with a 20^{+}-vertex u.
Otherwise, we could apply $H D_{u w}$, where w is at distance at least three along the boundary of f, which splits f into two non-pyramidal faces with weight at least 31 , contrary to the definition of M.
(P2) M has no 4^{+}-face $\ldots v_{2} v_{1}$ with $d\left(v_{2}\right) \geq 4, d\left(v_{i}\right) \geq 4$, where $i \notin\{1,3\}$ such that $d\left(v_{2}\right)+d\left(v_{i}\right) \geq 26$.

https://daneshyari.com/en/article/4646759

Download Persian Version:
https://daneshyari.com/article/4646759

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova).

