Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The weight of faces in normal plane maps

O.V. Borodin^a, A.O. Ivanova^{b,*}

^a Sobolev Institute of Mathematics, Novosibirsk 630090, Russia ^b Ammosov North-Eastern Federal University, Yakutsk 677000, Russia

ARTICLE INFO

Article history: Received 20 April 2015 Received in revised form 30 April 2016 Accepted 30 April 2016 Available online 26 May 2016

Keywords: Plane map Planar graph 3-polytope Structural properties Weight

ABSTRACT

The weight of a face in a 3-polytope is the degree-sum of its incident vertices, and the weight of a 3-polytope, w, is the minimum weight of its faces. A face is pyramidal if it is either a 4-face incident with three 3-vertices, or a 3-face incident with two vertices of degree at most 4. If pyramidal faces are allowed, then w can be arbitrarily large, so we assume the absence of pyramidal faces in what follows.

In 1940, Lebesgue proved that every quadrangulated 3-polytope has $w \le 21$. In 1995, this bound was lowered by Avgustinovich and Borodin to 20. Recently, we improved it to the sharp bound 18.

For plane triangulations without 4-vertices, Borodin (1992), confirming the Kotzig conjecture of 1979, proved that $w \leq 29$, which bound is sharp. Later, Borodin (1998) proved that $w \leq 29$ for all triangulated 3-polytopes. Recently, we obtained the sharp bound 20 for triangle-free polytopes.

In 1996, Horňák and Jendrol' proved for arbitrarily polytopes that $w \le 32$. In this paper we improve this bound to 30 and construct a polytope with w = 30.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

By a 3-polytope we mean a finite convex 3-dimensional polytope. As proved by Steinitz [26], the 3-polytopes are in 1–1 correspondence with the 3-connected planar graphs.

A plane map is *normal* (NPM) if each of its vertices and faces is incident with at least three edges. Clearly, every 3-polytope is an NPM.

The degree d(x) of a vertex or face x in an NPM M is the number of incident edges. A k-vertex or k-face is one of degree k, a k^+ -vertex has degree at least k, a k^- -face has degree at most k, and so on.

The weight w(f) of a face f in M is the degree-sum of its incident vertices. The weight w(M) (or simply w) of a map M is the minimum weight of faces in M.

A 3-face is *pyramidal* if it is incident with at least two 4⁻-vertices, and a 4-face is *pyramidal* if it is incident with at least three 3-vertices.

If *M* has pyramidal faces, then *w* can be arbitrarily large. Indeed, every face *f* of the Archimedean (3, 3, 3, *n*)- and (4, 4, *n*)- solids satisfies $w(f) \ge n + 8$. Therefore, speaking about *w* in what follows, we assume that NPMs have no pyramidal faces

We now recall some results about the structure of 5⁻-faces in an NPM. By δ denote the minimum degree of vertices in M. We say that f is a *face of type* $(k_1, k_2, ...)$ or simply $(k_1, k_2, ...)$ -*face* if the set of its incident vertices is majorized by the vector $(k_1, k_2, ...)$.

In 1940, Lebesgue [22] gave an approximated description of 5⁻-faces in NPMs.

http://dx.doi.org/10.1016/j.disc.2016.04.018 0012-365X/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova).

Theorem 1 (Lebesgue [22]). Every normal plane map has a 5⁻-face of one of the following types:

 $(3, 6, \infty), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),$

 $(4, 4, \infty), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7),$

 $(3, 3, 3, \infty), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).$

The classical Theorem 1, along with other ideas in Lebesgue [22], has numerous applications to coloring problems on plane graphs (first examples of such applications and a recent survey can be found in [7,24]). In 2002, Borodin [6] strengthened Theorem 1 in six parameters without worsening the others. However, the question in [6] of finding the best possible version(s) of Theorem 1 remains open, even for the special case of quadrangulations. Precise descriptions of 5^- faces are obtained for NPMs with $\delta = 5$ (Borodin [2]) and $\delta \ge 4$ (Borodin–Ivanova [8]), and also for triangulations (Borodin, Ivanova, Kostochka [11]).

Some parameters of Lebesgue's Theorem were improved for special classes of plane graphs. In 1989, Borodin [2] proved, confirming Kotzig's conjecture [20] of 1963, that every normal plane map with $\delta = 5$ has a (5, 5, 7)-face or (5, 6, 6)-face, where all parameters are best possible. This result also confirmed Grünbaum's conjecture [15] of 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph so as to obtain two components each of which has a cycle) of every 5-connected plane graph is at most 11, which bound is sharp (earlier, Plummer [25] obtained the bound 13).

For the plane triangulations without 4-vertices, Kotzig [21] proved that $w \leq 39$, and Borodin [4] proved, confirming Kotzig's conjecture [21], that $w \leq 29$; this bound is best possible, as follows from the construction obtained from the icosahedron by twice inserting a 3-vertex into each face. Borodin [5] further showed that $w \leq 29$ for every triangulated 3-polytope.

In 1940, Lebesgue [22] proved that every quadrangulated 3-polytope satisfies $w \le 21$. In 1995, this bound was improved in Avgustinovich–Borodin [1] to 20. Recently, we [9] improved this bound to the sharp bound 18, and for triangle-free polytopes we [10] recently obtained the best possible bound 20.

Borodin and Woodall [12], with the additional assumption of the absence of $(3, 5, \infty)$ -faces, proved that there is either a (3, 6, 20)-face or a 5⁻-face of weight at most 25, which bound is sharp. We note that the weight of all 5⁻-faces can be at least 38 in the presence of $(3, 5, \infty)$ -faces (Horňák–Jendrol' [16]). On the other hand, Horňák and Jendrol' [16] proved that there is a 5⁻-face f with $w(f) \le 47$.

Other results related to Lebesgue's Theorem can be found in the above mentioned papers and also in [18,13,3,14,17,19, 23,27].

For arbitrary polytopes, Horňák and Jendrol' [16] (1996) proved that $w \le 32$. The purpose of our paper is to improve this bound to $w \le 30$ and construct a 3-polytope with w = 30.

Theorem 2. Every normal plane map without pyramidal faces has a face of weight at most 30, which bound is sharp.

Corollary 3. Every 3-polytope without pyramidal faces has a face of weight at most 30, which bound is sharp.

2. Proving Theorem 2

The bound 30 is attained at the construction in Fig. 1 derived from the (3, 3, 3, 3, 5) Archimedean solid. Indeed, we put the inserts presented on the left in Fig. 1 into each face of the (3, 3, 3, 3, 5) Archimedean solid, in which every vertex is incident with four triangles and a pentagon. As a result, we have a 3-polytope such that every 3-face is incident with a 22-vertex, and so it has weight at least 30, while each 10-face has weight 40.

Now let a normal plane map M' be a counterexample to the upper bound in Theorem 2. Starting from M', we construct a counterexample M with some useful properties.

The operation HD_{uw} consists in putting a diagonal uw into a 4⁺-face f to split f into two non-pyramidal faces. For example, HD_{uw} works if $d(u) \ge 22$ and $d(w) \ge 4$, since it neither creates pyramidal faces, nor produces faces of weight less than 22 + 1 + 4 + 1 + 3 = 31. Other possibilities of applying HD_{uw} will be given below.

We apply HD_{uw} to M' as many times as possible; this results in a counterexample M.

2.1. Basic structural properties of the counterexample M

(P1) *M* has no 6^+ -face incident with a 20^+ -vertex *u*.

Otherwise, we could apply HD_{uw} , where w is at distance at least three along the boundary of f, which splits f into two non-pyramidal faces with weight at least 31, contrary to the definition of M.

(P2) *M* has no 4^+ -face ... v_2v_1 with $d(v_2) \ge 4$, $d(v_i) \ge 4$, where $i \notin \{1, 3\}$ such that $d(v_2) + d(v_i) \ge 26$.

Download English Version:

https://daneshyari.com/en/article/4646759

Download Persian Version:

https://daneshyari.com/article/4646759

Daneshyari.com