Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On automorphisms and structural properties of double generalized Petersen graphs

^a University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia

^b University of Primorska, IAM, Muzejski trg 2, 6000 Koper, Slovenia

^c AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland

ARTICLE INFO

Article history: Received 12 November 2015 Received in revised form 25 May 2016 Accepted 26 May 2016 Available online 1 July 2016

Keywords: Double generalized Petersen graph Vertex-transitive Edge-transitive Automorphism group Hamilton cycle Vertex-coloring Edge-coloring

1. Introduction

The generalized Petersen graphs GP(n, k), first introduced by Coxeter in [3], are a natural generalization of the well-known Petersen graph (see Fig. 1).

Definition 1.1. Given an integer $n \ge 3$ and $k \in \mathbb{Z}_n \setminus \{0\}, 2 \le 2k < n$, the generalized Petersen graph GP(n, k) is defined to have vertex set $\{u_i, v_i | i \in \mathbb{Z}_n\}$ and edge set the union $\Omega \cup \Sigma \cup I$, where

$$\begin{split} & \Omega = \{\{u_i, u_{i+1}\}, \mid i \in \mathbb{Z}_n\} \text{ (the outer edges),} \\ & \Sigma = \{\{u_i, v_i\}, \mid i \in \mathbb{Z}_n\} \text{ (the spokes), and} \\ & I = \{\{v_i, v_{i+k}\}, \mid i \in \mathbb{Z}_n\} \text{ (the inner edges).} \end{split}$$

A natural generalization of the generalized Petersen graphs are the double generalized Petersen graphs DP(n, t), first introduced in [7] as examples of vertex-transitive non-Cayley graphs. They are defined as follows (two examples are given in Fig. 2).

Definition 1.2. Given an integer $n \ge 3$ and $t \in \mathbb{Z}_n \setminus \{0\}, 2 \le 2t < n$, the double generalized Petersen graph DP(n, t) is defined to have vertex set $\{x_i, y_i, u_i, v_i | i \in \mathbb{Z}_n\}$ and edge set the union $\Omega \cup \Sigma \cup I$, where

http://dx.doi.org/10.1016/j.disc.2016.05.032 0012-365X/© 2016 Elsevier B.V. All rights reserved.

EI SEVIER

ABSTRACT

The concept of double generalized Petersen graphs was introduced by Zhou and Feng in Zhou and Feng (2012), where it was asked for a characterization of the automorphism groups of these graphs. This paper gives this characterization and considers hamiltonicity, vertex-coloring and edge-coloring properties of these graphs.

© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland. *E-mail address:* pawel.petecki@gmail.com (P. Petecki).

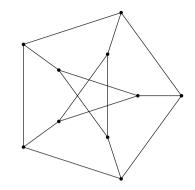


Fig. 1. The generalized Petersen graph GP(5, 2) (the Petersen graph).

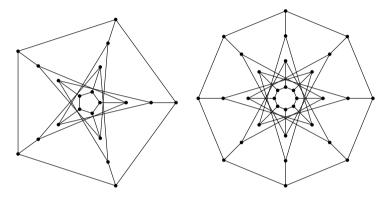


Fig. 2. The double generalized Petersen graph DP(5, 2), which is isomorphic to the generalized Petersen graph GP(10, 2) (the dodecahedron), on the left hand-side picture, and the double generalized Petersen graph DP(8, 3) on the right hand-side picture.

 $\Omega = \{\{x_i, x_{i+1}\}, \{y_i, y_{i+1}\} \mid i \in \mathbb{Z}_n\} \text{ (the outer edges),} \\ \Sigma = \{\{x_i, u_i\}, \{y_i, v_i\} \mid i \in \mathbb{Z}_n\} \text{ (the spokes), and} \\ I = \{\{u_i, v_{i+t}\}, \{v_i, u_{i+t}\} \mid i \in \mathbb{Z}_n\} \text{ (the inner edges).} \end{cases}$

The motivation for the research in this paper, resulting in a complete characterization of automorphism groups of double generalized Petersen graphs (see Propositions 3.4 and 3.5, and Remark 3.10), comes from questions post in [7]. The characterization is obtained with a generalization of the method that was used in [5] to obtain a characterization of automorphisms of generalized Petersen graphs.

Aiming at obtaining the information how structural properties of double generalized Petersen graphs are linked with the structural properties of generalized Petersen graphs [1,2], hamiltonicity properties, vertex-coloring and edge-coloring of double generalized Petersen graphs are also considered. In particular, it is shown that any DP(2n, t) has a Hamilton cycles (see Proposition 4.1) whereas for DP(2n + 1, t) the existence of a Hamilton cycles is proven only for t being a generator of \mathbb{Z}_{2n+1} (see Proposition 4.2). Any DP(2n, t) is bipartite, thus two colors suffice for proper vertex-coloring whereas for DP(2n + 1, t) three colors are needed (see Lemmas 5.1 and 5.2). Finally, it is shown that there are no snarks amongst double generalized Petersen graphs (see Lemma 5.3).

2. Preliminaries

Given a graph *X* the set of its vertices is denoted by V(X) and the set of its edges by E(X). For a graph *X* the bijection $\phi : V(X) \rightarrow V(X)$ such that $xy \in E(X) \Leftrightarrow \phi(x)\phi(y) \in E(X)$ is called an automorphism of *X*. The set of all automorphisms of *X* together with composition of mappings forms a group called the *automorphism group* Aut(*X*) of *X*. A graph *X* is said to be *vertex-transitive* and *edge-transitive* if its automorphism group Aut(*X*) acts transitively on V(X) and E(X), respectively. The set of neighbors of the vertex v in *X* is denoted by $N(v) = \{u \in V(X) \mid uv \in E(X)\}$. A Hamilton cycle in a graph is a cycle containing all the vertices of the graph.

3. Automorphisms of double generalized Petersen graphs

In this section, with a generalization of the methods used in [5] to characterize automorphisms of generalized Petersen graphs, we give a complete characterization of automorphism groups of double generalized Petersen graphs, implying

Download English Version:

https://daneshyari.com/en/article/4646764

Download Persian Version:

https://daneshyari.com/article/4646764

Daneshyari.com