Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Arc-transitive graphs of square-free order and small valency

Cai Heng Li^a, Zai Ping Lu^{b,*}, Gaixia Wang^c

^a School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

^b Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

^c Department of Applied Mathematics, Anhui University of Technology, Maanshan 243002, PR China

ARTICLE INFO

Article history: Received 16 November 2015 Received in revised form 26 April 2016 Accepted 5 June 2016 Available online 1 July 2016

Keywords: Arc-transitive graph Normal quotient Vertex stabilizer Locally primitive (Almost) simple group

1. Introduction

All graphs and groups considered in this paper are assumed to be finite.

Let $\Gamma = (V, E)$ be a simple connected graph with vertex set V and edge set E. The number of vertices |V| is called the *order* of Γ . Let Aut Γ be the automorphism group of Γ and let G be a subgroup of Aut Γ , written as $G \leq \text{Aut}\Gamma$. Then the graph Γ is said to be *G*-vertex-transitive or *G*-edge-transitive if *G* acts transitively on *V* and *E*, respectively. Recall that an *arc* in Γ is an ordered pair of adjacent vertices. The graph Γ is said to be *G*-acts transitively on the set of all arcs in Γ . For $\alpha \in V$, we denote by G_{α} and $\Gamma(\alpha)$ respectively the stabilizer of α in *G* and the set of neighbors of α in Γ , that is,

$$G_{\alpha} = \{g \in G \mid \alpha^g = \alpha\} \text{ and } \Gamma(\alpha) = \{\beta \in V \mid \{\alpha, \beta\} \in E\}$$

The graph Γ is called *G*-locally-primitive if for every $\alpha \in V$ the stabilizer G_{α} acts primitively on $\Gamma(\alpha)$. It is easy to see that Γ is *G*-edge-transitive if it is *G*-locally-primitive. Moreover, if Γ is both *G*-vertex-transitive and *G*-locally-primitive, then Γ must be *G*-arc-transitive; in this case, Γ is said to be *G*-locally-primitive arc-transitive.

The study of graphs with square-free order has a long history, see for example [1,16,17,19] for those graphs of order being a product of two primes. This paper is devoted to classifying arc-transitive graphs of square-free order and small valency.

In recent work [14], the authors gave a reduction for connected locally-primitive arc-transitive of square-free order. We proved that, for a connected locally-primitive arc-transitive graph Γ of square-free order and valency d, if it is not a complete bipartite graph then either Aut Γ is soluble, or Γ is a cover of one of the 'basic' graphs associated with PSL(2, p), PGL(2, p) and a finite number (depending only on the valency d) of other almost simple groups. Then for some small values of d we may determine most 'basic' graphs, which makes it possible to give a classification of such graphs of small valencies.

* Corresponding author. E-mail addresses: cai.heng.li@uwa.edu.au (C.H. Li), lu@nankai.edu.cn (Z.P. Lu), wgx075@163.com (G.X. Wang).

http://dx.doi.org/10.1016/j.disc.2016.06.002 0012-365X/© 2016 Elsevier B.V. All rights reserved.

This paper is one of a series of papers devoted to characterizing edge-transitive graphs of square-free order. It presents a complete list of locally-primitive arc-transitive graphs of square-free order and valency $d \in \{5, 6, 7\}$.

© 2016 Elsevier B.V. All rights reserved.

Thus a natural question is to find a classification of locally-primitive arc-transitive graphs of square-free order and small valency d. This question was solved for d = 3 and 4 in [13] and [15], respectively. In this paper we deal with the case where $d \in \{5, 6, 7\}$. Our main result is stated as follows.

Theorem 1.1. Let Γ be a connected *G*-locally-primitive arc-transitive graph of square-free order and valency d = 5, 6 or 7. Then one of the following statements holds.

- (i) $G = D_{2n}:\mathbb{Z}_d$ with $d \in \{5, 7\}$, and Γ is a graph given by Construction 4.1.
- (ii) Γ is isomorphic to one of the following graphs: K_6 , K_7 , $K_{5,5}$, $K_{7,7}$ and $K_{7,7} - 7K_2$; the incidence graphs of PG(3, 2), PG(2, 4), PG(2, 5) and GO(4); the graphs given in Examples 4.2–4.5.
- (iii) G = PSL(2, p) or PGL(2, p) for odd prime p, and for an edge $\{\alpha, \beta\}$ of Γ the pair $(G_{\alpha}, G_{\alpha\beta})$ is listed in Table 3.

For groups, we follow the notation used in the Atlas [6] while we sometimes use \mathbb{Z}_l and \mathbb{Z}_n^k to denote respectively the cyclic group of order *l* and the elementary abelian group of order p^k .

2. Preliminaries

Let $\Gamma = (V, E)$ be a graph of valency d, let $\{\alpha, \beta\} \in E$ and $G \leq \operatorname{Aut}\Gamma$. Set $G_{\alpha\beta} = G_{\alpha} \cap G_{\beta}$, call the *arc-stabilizer* of (α, β) (and (β, α)). Assume that Γ is *G*-arc-transitive. Then G_{α} is transitive on $\Gamma(\alpha)$, and $d = |\Gamma(\alpha)| = |G_{\alpha}: G_{\alpha\beta}|$. Take $x \in G$ with $(\alpha, \beta)^x = (\beta, \alpha)$. Then

$$x \in \mathbf{N}_G(G_{\alpha\beta}) \setminus G_{\alpha\beta}, \quad x^2 \in G_{\alpha\beta}.$$

(In particular, the index $|\mathbf{N}_G(G_{\alpha\beta}) : G_{\alpha\beta}|$ is even.) Obviously, this x may be chosen as a 2-element in the normalizer $\mathbf{N}_G(G_{\alpha\beta})$. Moreover, Γ is connected if and only if $\langle x, G_{\alpha} \rangle = G$. Since G is transitive on V, the map $\alpha^{g} \mapsto G_{\alpha}g$ is a bijection between V and $[G: G_{\alpha}]$, the set of right cosets of G_{α} in G. It is easy to show that this map is an isomorphism from the graph Γ to a coset graph defined as follows.

Let *G* be a finite group and *H* be a core-free subgroup of *G*, where core-free means that $\bigcap_{g \in G} H^g = 1$. For $x \in G \setminus H$, the *coset graph* $Cos(G, H, H\{x, x^{-1}\}H)$ is defined on [G : H] such that Hg_1 and Hg_2 are adjacent whenever $g_2g_1^{-1} \in HxH \cup Hx^{-1}H$. Note that G may be viewed as a subgroup of AutCos(G, H, $H\{x, x^{-1}\}H$), where G acts on [G : H] by right multiplication. The following statements for coset graphs are well-known.

Lemma 2.1. Let G be a finite group and H a core-free subgroup of G. Set $\Gamma = Cos(G, H, H\{x, x^{-1}\}H)$, where $x \in G \setminus H$. Then Γ is both G-vertex-transitive and G-edge-transitive, and

- (i) Γ is G-arc-transitive if and only if HxH = HyH for some 2-element $y \in \mathbf{N}_{G}(H \cap H^{x}) \setminus H$ with $y^{2} \in H \cap H^{x}$; in this case, Γ has valency $|H : (H \cap H^y)|$:
- (ii) Γ is connected if and only if $\langle H, x \rangle = G$.

Let $\Gamma = (V, E)$ be a connected graph and $G \leq \operatorname{Aut}\Gamma$. For $\alpha \in V$, the stabilizer G_{α} induces a permutation group $G_{\alpha}^{\Gamma(\alpha)}$. Let $G_{\alpha}^{[1]}$ be the kernel of this action. Then $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha}/G_{\alpha}^{[1]}$. Consider the actions of Sylow subgroups of $G_{\alpha}^{[1]}$ on V. It is easily shown that the next lemma holds, see [5] for example.

Lemma 2.2. Let $\Gamma = (V, E)$ be a connected regular graph, $G \leq \operatorname{Aut}\Gamma$ and $\alpha \in V$. Assume that $G_{\alpha} \neq 1$. Let p be a prime divisor of $|G_{\alpha}|$. Then $p \leq |\Gamma(\alpha)|$. If further Γ is G-vertex-transitive, then p divides $|G_{\alpha}^{\Gamma(\alpha)}|$ and, for $\beta \in \Gamma(\alpha)$, each prime divisor of $|G_{\alpha\beta}|$ is less than $|\Gamma(\alpha)|$.

Lemma 2.3. Assume that $\Gamma = (V, E)$ is a connected *G*-vertex-transitive graph. Let $N \triangleleft G$ be a normal subgroup of *G* such that $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular for some $\alpha \in V$. Then $N_{\alpha}^{[1]} = 1$, that is, N_{α} is faithful on $\Gamma(\alpha)$.

Proof. Let $\beta \in \Gamma(\alpha)$. Then $\beta = \alpha^x$ for some $x \in G$, and hence $N_\beta = N \cap G_{\alpha^x} = (N_\alpha)^x$. It follows that $N_\beta^{\Gamma(\beta)}$ and $N_\alpha^{\Gamma(\alpha)}$ are permutation isomorphic; in particular, $N_{\beta}^{\Gamma(\beta)}$ is semiregular on $\Gamma(\beta)$. Thus $N_{\alpha}^{[1]}$ acts trivially on $\Gamma(\beta)$, and so $N_{\alpha}^{[1]} = N_{\beta}^{[1]}$. Since Γ is connected, $N_{\alpha}^{[1]}$ fixes each vertex of Γ , and hence $N_{\alpha}^{[1]} = 1$. \Box

Lemma 2.4. Let $\Gamma = (V, E)$ be a connected graph, $N \triangleleft G \leq \operatorname{Aut}\Gamma$ and $\alpha \in V$. Assume that either N is regular on V, or Γ is a bipartite graph such that N is regular on both the bipartition subsets of Γ . Then $G_{\alpha}^{[1]} = 1$.

Proof. Set $X = NG_{\alpha}^{[1]}$. Then $X_{\alpha} = G_{\alpha}^{[1]}$ and $X_{\alpha}^{[1]} = G_{\alpha}^{[1]}$, and hence $X_{\alpha}^{\Gamma(\alpha)} = 1$. Assume first that *N* is regular on *V*. Then $G = NG_{\alpha}$. It follows that *X* is normal in *G*. Thus our result follows from Lemma 2.3. Now assume that Γ is a bipartite graph with bipartition subsets U and W, and that N is regular on both U and W. For each $\delta \in U \cup W$, we have $NX_{\alpha} = X = NX_{\delta}$, and $|X_{\delta}| = |X_{\alpha}|$. Since $X_{\alpha} = G_{\alpha}^{[1]}$ acts trivially on $\Gamma(\alpha)$, we have $X_{\alpha} \leq X_{\beta}$ for Download English Version:

https://daneshyari.com/en/article/4646768

Download Persian Version:

https://daneshyari.com/article/4646768

Daneshyari.com