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a b s t r a c t

In an instance of the house allocation problem, two sets A and B are given. The set A is
referred to as applicants and the set B is referred to as houses. We denote bym and n the size
of A and B, respectively. In the house allocation problem, we assume that every applicant
a ∈ A has a preference list over the set of houses B. We call an injective mapping τ from A
to B amatching. A blocking coalition of τ is a non-empty subset A′ of A such that there exists
a matching τ ′ that differs from τ only on elements of A′, and every element of A′ improves
in τ ′, compared to τ , according to its preference list. If there exists no blocking coalition,
we call the matching τ a Pareto optimal matching (POM).

A house b ∈ B is reachable if there exists a Pareto optimal matching using b. The set of
all reachable houses is denoted by E∗. We show

|E∗
| ≤


i=1,...,m

m
i


= Θ(m logm).

This is asymptotically tight. A set E ⊆ B is reachable (respectively exactly reachable) if there
exists a Pareto optimalmatching τ whose image contains E as a subset (respectively equals
E). We give bounds for the number of exactly reachable sets. We find that our results hold
in the more general setting of multi-matchings, when each applicant a of A is matched
with ℓa elements of B instead of just one. Furthermore, we give complexity results and
algorithms for corresponding algorithmic questions. Finally, we characterize unavoidable
houses, i.e., houses that are used by all POMs. We obtain efficient algorithms to determine
all unavoidable elements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Definitions

The house allocation problem is motivated by the following setup: a set of people wish to be allocated to a certain set of
houses. Each person ranks the set of houses and wants to be assigned to the house with her highest preference. As soon as
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two people have the same favorite house this is not possible. Motivated by this picture, we generalize the setup. We start
with some definitions.

In an instance of the house allocation problem, two sets A and B are given. The set A represents applicants and the set B
represents houses. We denote bym and n the size of A and B, respectively. In the house allocation problem, we assume that
every a ∈ A has a preference list over the set B. A preference list can be formally defined as a total order on B. We call an
injective mapping τ from A to B a matching. A blocking coalition of τ is a non-empty subset A′ of A such that there exists a
matching τ ′ that differs from τ only on elements of A′, and every element of A′ improves in τ ′, compared to τ according to
its preference list. If there exists no blocking coalition, τ is called a Pareto optimal matching (POM).

We represent the preference lists by an m × n matrix. Every row represents the preference list of one of the applicants
in A, i.e., in a given row r corresponding to some applicant a ∈ A, the leftmost house is the one that a prefers most, etc.,
that is house b1 is left of b2 in r if and only if a prefers b1 over b2. Note that no row contains an element from B twice. We
usually denote this matrix byM and following this interpretation we usually denote the members of A by r1, r2, . . . , rm and
the members of B by 1, 2, . . . , n. Because of this matrix representation, we usually refer to members of A only as rows and
to members of B as elements (of the matrix).

To illustrate the notion consider the followingmatrix and observe that thematching indicated by circles is indeed Pareto
optimal.

① 5 3 2 4
3 1 ④ 5 2
1 ③ 5 4 2


.

We denote tuples p = (a, k) as positions of the matrix, if a is some row and k is some natural number. A matching
corresponds to a set of positions Pτ if there is exactly one position for each row and no two positions contain the same
house. The image set of τ corresponds to the set of houses of B in these positions. Thus, we say that τ selects some position
p ofM (resp. some element b of B), if p is in Pτ (resp. b is in the image set of τ ). Similarly, given somematching τ we say that
a row a selects a position p in row a (resp. element b) if p = (a, k) ∈ Pτ for some k (resp. b is in the image of τ ). We denote
by s(τ ) the image set of τ .

In a POM the positions after the mth column will never be assigned, because at least one of the previous m elements in
that row is preferred and not assigned to any other element on A. Therefore, it is sufficient to consider only m × m square
matrices. (In other words, only the firstm elements of the preference lists matter.)

If some POM τ selects p (resp. b), then it is a reachable position (resp. reachable element). More generally, a set E ⊆ B is
(exactly) reachable if there exists a POM τ with E ⊆ s(τ ) (E = s(τ )). In this case, we also say that τ reaches E. An element b
is unavoidable if it belongs to the set s(τ ) for every Pareto optimal matching τ ofM and b is called avoidable if there exists a
Pareto optimal matching τ with b ∉ s(τ ). A set E is avoidable if there exists a POM τ with s(τ ) ∩ E = ∅. Note that for a set
E such that |E| = m it is exactly reachable if and only if B \ E is avoidable. These notions can be generalized naturally to the
case ofmulti-matchings, when each element a has to be paired up with ℓa ≥ 1 elements of B. For the precise definitions see
Section 5. These Pareto Optimal Multi-matchings (POMMs) can also appear naturally in practical applications and we will see
that our results about POMs generalize naturally to POMMs.Wewill also studymatrices with fewer thanm columns, precise
definitions will be given in Section 1.4. In this case, preference lists are incomplete, i.e., it can happen that some elements of
A are not assigned. (In this case, it might be interesting to compute a POM of maximum size.)

Example 1. To illustrate the notions and to avoid confusion, we give here a detailed example. The reader can use it to verify
that she understood all important notions. The example can be skipped, aswewill not refer to it again. Consider the following
matrix.

M =

1 5 3 2
3 1 5 4
1 6 5 4
3 6 2 4

 .

The elements 1 and 3 are unavoidable, as they are both in the first column of M and thus picked by every POM. A quick
check reveals that every other element of M can be avoided. Each set E with 1 ∈ E or 3 ∈ E is also unavoidable. A simple
argument reveals that every set E ⊆ {2, 4, 5, 6} with |E| ≥ 3 is unavoidable, because every POM picks 4 elements of M . In
order to determine all unavoidable sets, there remain only six sets E ⊂ {2, 4, 5, 6} of size 2 to be examined. It turns out that
only {5, 6} and {2, 5} are unavoidable.

It is easy to see that all elements of M are reachable. In order to specify the reachable sets, note that if some set E
is reachable then are all its subsets as well. Thus, it is sufficient to specify all reachable sets of size 4. Also note that if
E ⊆ {1, 2, 3, 4, 5, 6} of size four is reachable then D = {1, 2, 3, 4, 5, 6} \ E is avoidable. Thus, by the discussion above, the
four reachable sets of size four are exactly

{1, 3, 4, 5}, {1, 3, 2, 5}, {1, 3, 2, 6}, {1, 3, 5, 6}.
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