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a b s t r a c t

We prove an interesting symmetric q-series identity which generalizes a result due to
Ramanujan. A proof that is analytic in nature is offered, and a bijective-type proof is also
outlined.
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1. Introduction

In [1] Andrews gives a wonderful introduction of Ramanujan’s ‘‘Lost’’ notebook, and lists some interesting identities
contained therein. One of which is the following beautiful symmetric identity [1, eq. (1.5)], where if

f (α, β) :=
1

1 − α
+

∑
n≥1

βn

(1 − αxn)(1 − αxn−1y)(1 − αxn−2y2) · · · (1 − αyn)
, (1.1)

then

f (α, β) = f (β, α). (1.2)

The identitywe present here is a refinement of the casewhere x = q, and y = q2. Andrews provides an elegant bijective proof
of this identity in [1, pg. 107] by taking the conjugate partition (see also Pak [8, pg. 18] for a nice presentation of Andrews’
bijection). We will also consider conjugate partitions in the third section, but will require a slightly different approach using
a 2-modular diagram (conceptually) to prove the following theorem bijectively. We first note some notation which may be
found in [2,6]. We put, throughout this paper, (a)n = (a; q)n :=

∏
0≤k<n(1 − aqk). Of course the reader should note the

infinite product that is obtained by passing the limit n → ∞, which we denote by (a)∞.

Theorem 1.1. We have, for arbitrary a, and |b| < 1, |t| < 1,∑
n≥0

(−abqn+1
; q)ntn

(bqn; q)n+1
=

∑
n≥0

(−atqn+1
; q)nbn

(tqn; q)n+1
. (1.3)
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2. An analytic proof

Since in [1] an analytic proof uses the q-binomial theorem, we decided to stay with our original use of a different
q-polynomial identity. Namely, we use the q-Pfaff–Saalschütz [6, pg. 355, eq. (II.12)]∑

n≥0

(a)n(b)n(q−N )nqn

(c)n(q)n(q1−Nab/c)n
=

(c/a)N (c/b)N
(c)N (c/ab)N

. (2.1)

The left side of (2.1) may be written
(q)N

(c/(ab))N

∑
n≥0

(a)n(b)n(c/(ab))N−n

(c)n(q)n(q)N−n
(c/ab)n. (2.2)

Putting c = bq in this identity we obtain∑
n≥0

(a)n(q/a)N−n

(q)n(q)N−n(1 − bqn)
(q/a)n =

(bq/a)N
(b)N+1

. (2.3)

Now we may use (2.3) to compute the following:∑
n≥0

(abqn+1
; q)ntn

(bqn; q)n+1
=

∑
N≥0

∑
n≥0

(a)n(q/a)N−n(q/a)ntN

(q)n(1 − bqN+n)(q)N−n
,

shifting summation indices N → N + n and applying [5, pg. 18, eq. (16.3)] gives,∑
N≥0

∑
n≥0

(a)n(q/a)N (q/a)ntN+n

(q)n(1 − bqN+2n)(q)N
=

∑
n≥0

tn(a)n(q/a)n

(q)n

(tq/a)∞
(t)∞

∑
N≥0

(t)N
(tq/a)N

(bq2n)N .

By [5, pg. 4, eq. (6.2)] we compute this to be equal to

(tq/a)∞
(t)∞

∑
n≥0

(t)n
(tq/a)n

bn
(tq2n+1)∞

(tq2n+1/a)∞
,

which may be simplified to the desired identity,∑
n≥0

(atqn+1
; q)nbn

(tqn; q)n+1
.

3. A bijective proof and some corollaries

We first start with some standard notation on partitions, which can be found in [5, pg. 37]. We write a partition π to
be a sequence which consists of nonnegative integers, say (π1, π2, . . . , πm) where we say each πi for 1 ≤ i ≤ m is a ‘part’
with the largest π1, and smallest πm. The number of such parts is denoted l(π ), and the number of odd parts will be denoted
o(π ). Since Guo obtained a similar symmetric q-series identity using partitions where odd parts do not repeat, we consider
a similar approach. The main bijection appears to be due to R. Chapman in his proof of identities from [3] (see [4] and [6]
for more details). We will require an extra step in dealing with the inequality on parts that is in our identity, which is a key
difference, however. We may replace q by q2 in (1.3) and then replace awith aq−1 to obtain that∑

n≥0

(−abq2n+1
; q2)ntn

(bq2n; q2)n+1
=

∑
n≥0

(−atq2n+1
; q2)nbn

(tq2n; q2)n+1
. (3.1)

Now, on the left hand side, a keeps track of the number of odd parts, b keeps track of the number of parts and t keeps
track of the largest part. It can then be seen that if we let O be the set of partitions where odd parts do not repeat, we have
that ∑

π∈O
l(π )=j

π1≤4M
πm≥2M

ao(π )q|π |
=

∑
π∈O

l(π )=M
π1≤4j
πm≥2j

ao(π )q|π |, (3.2)

which has a similar resemblance (as is to be expected) to Guo’s partition identity [7, Theorem 1.2]. The key difference is the
inequality on the largest and smallest parts. This indeed causes a problem with using Chapman’s bijection directly, but we
have a simple solution to this. We say a nonempty partition π is in O∗ if its largest part π1 = 2M is even, and themultiplicity
of 2M in π is at least the number of smaller parts in π . In our case we start with the left side of (3.2), and if parts are ≥ 2r ,
r ∈ N, say, then 2r is removed from each part to appear as a separate part. This process ensures that in the new partition, 2r
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