Note

On a symmetric q-series identity

Alexander E. Patkowski

1390 Bumps River Rd., Centerville, MA 02632, USA

A R T I C L E I N F O

Article history:

Received 16 April 2016
Received in revised form 23 June 2016
Accepted 23 June 2016
Available online 18 July 2016
Dedicated to Piotr, Carolyn, and Julia

Keywords:

q-series
Partitions

Abstract

We prove an interesting symmetric q-series identity which generalizes a result due to Ramanujan. A proof that is analytic in nature is offered, and a bijective-type proof is also outlined.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In [1] Andrews gives a wonderful introduction of Ramanujan's "Lost" notebook, and lists some interesting identities contained therein. One of which is the following beautiful symmetric identity [1, eq. (1.5)], where if

$$
\begin{equation*}
f(\alpha, \beta):=\frac{1}{1-\alpha}+\sum_{n \geq 1} \frac{\beta^{n}}{\left(1-\alpha x^{n}\right)\left(1-\alpha x^{n-1} y\right)\left(1-\alpha x^{n-2} y^{2}\right) \cdots\left(1-\alpha y^{n}\right)} \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
f(\alpha, \beta)=f(\beta, \alpha) \tag{1.2}
\end{equation*}
$$

The identity we present here is a refinement of the case where $x=q$, and $y=q^{2}$. Andrews provides an elegant bijective proof of this identity in [1, pg. 107] by taking the conjugate partition (see also Pak [8, pg. 18] for a nice presentation of Andrews' bijection). We will also consider conjugate partitions in the third section, but will require a slightly different approach using a 2-modular diagram (conceptually) to prove the following theorem bijectively. We first note some notation which may be found in [2,6]. We put, throughout this paper, $(a)_{n}=(a ; q)_{n}:=\prod_{0 \leq k<n}\left(1-a q^{k}\right)$. Of course the reader should note the infinite product that is obtained by passing the limit $n \rightarrow \infty$, which we denote by $(a)_{\infty}$.

Theorem 1.1. We have, for arbitrary a, and $|b|<1,|t|<1$,

$$
\begin{equation*}
\sum_{n \geq 0} \frac{\left(-a b q^{n+1} ; q\right)_{n} t^{n}}{\left(b q^{n} ; q\right)_{n+1}}=\sum_{n \geq 0} \frac{\left(-a t q^{n+1} ; q\right)_{n} b^{n}}{\left(t q^{n} ; q\right)_{n+1}} \tag{1.3}
\end{equation*}
$$

[^0]
2. An analytic proof

Since in [1] an analytic proof uses the q-binomial theorem, we decided to stay with our original use of a different q-polynomial identity. Namely, we use the q-Pfaff-Saalschütz [6, pg. 355, eq. (II.12)]

$$
\begin{equation*}
\sum_{n \geq 0} \frac{(a)_{n}(b)_{n}\left(q^{-N}\right)_{n} q^{n}}{(c)_{n}(q)_{n}\left(q^{1-N} a b / c\right)_{n}}=\frac{(c / a)_{N}(c / b)_{N}}{(c)_{N}(c / a b)_{N}} \tag{2.1}
\end{equation*}
$$

The left side of (2.1) may be written

$$
\begin{equation*}
\frac{(q)_{N}}{(c /(a b))_{N}} \sum_{n \geq 0} \frac{(a)_{n}(b)_{n}(c /(a b))_{N-n}}{(c)_{n}(q)_{n}(q)_{N-n}}(c / a b)^{n} \tag{2.2}
\end{equation*}
$$

Putting $c=b q$ in this identity we obtain

$$
\begin{equation*}
\sum_{n \geq 0} \frac{(a)_{n}(q / a)_{N-n}}{(q)_{n}(q)_{N-n}\left(1-b q^{n}\right)}(q / a)^{n}=\frac{(b q / a)_{N}}{(b)_{N+1}} \tag{2.3}
\end{equation*}
$$

Now we may use (2.3) to compute the following:

$$
\sum_{n \geq 0} \frac{\left(a b q^{n+1} ; q\right)_{n} t^{n}}{\left(b q^{n} ; q\right)_{n+1}}=\sum_{N \geq 0} \sum_{n \geq 0} \frac{(a)_{n}(q / a)_{N-n}(q / a)^{n} t^{N}}{(q)_{n}\left(1-b q^{N+n}\right)(q)_{N-n}}
$$

shifting summation indices $N \rightarrow N+n$ and applying [5, pg. 18, eq. (16.3)] gives,

$$
\sum_{N \geq 0} \sum_{n \geq 0} \frac{(a)_{n}(q / a)_{N}(q / a)^{n} t^{N+n}}{(q)_{n}\left(1-b q^{N+2 n}\right)(q)_{N}}=\sum_{n \geq 0} \frac{t^{n}(a)_{n}(q / a)^{n}}{(q)_{n}} \frac{(t q / a)_{\infty}}{(t)_{\infty}} \sum_{N \geq 0} \frac{(t)_{N}}{(t q / a)_{N}}\left(b q^{2 n}\right)^{N}
$$

By [5, pg. 4, eq. (6.2)] we compute this to be equal to

$$
\frac{(t q / a)_{\infty}}{(t)_{\infty}} \sum_{n \geq 0} \frac{(t)_{n}}{(t q / a)_{n}} b^{n} \frac{\left(t q^{2 n+1}\right)_{\infty}}{\left(t q^{2 n+1} / a\right)_{\infty}}
$$

which may be simplified to the desired identity,

$$
\sum_{n \geq 0} \frac{\left(a t q^{n+1} ; q\right)_{n} b^{n}}{\left(t q^{n} ; q\right)_{n+1}}
$$

3. A bijective proof and some corollaries

We first start with some standard notation on partitions, which can be found in [5, pg. 37]. We write a partition π to be a sequence which consists of nonnegative integers, say $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)$ where we say each π_{i} for $1 \leq i \leq m$ is a 'part' with the largest π_{1}, and smallest π_{m}. The number of such parts is denoted $l(\pi)$, and the number of odd parts will be denoted $o(\pi)$. Since Guo obtained a similar symmetric q-series identity using partitions where odd parts do not repeat, we consider a similar approach. The main bijection appears to be due to R. Chapman in his proof of identities from [3] (see [4] and [6] for more details). We will require an extra step in dealing with the inequality on parts that is in our identity, which is a key difference, however. We may replace q by q^{2} in (1.3) and then replace a with $a q^{-1}$ to obtain that

$$
\begin{equation*}
\sum_{n \geq 0} \frac{\left(-a b q^{2 n+1} ; q^{2}\right)_{n} t^{n}}{\left(b q^{2 n} ; q^{2}\right)_{n+1}}=\sum_{n \geq 0} \frac{\left(-a t q^{2 n+1} ; q^{2}\right)_{n} b^{n}}{\left(t q^{2 n} ; q^{2}\right)_{n+1}} \tag{3.1}
\end{equation*}
$$

Now, on the left hand side, a keeps track of the number of odd parts, b keeps track of the number of parts and t keeps track of the largest part. It can then be seen that if we let O be the set of partitions where odd parts do not repeat, we have that

$$
\begin{equation*}
\sum_{\substack{\pi \pi 0 \\ 1(\pi)=j \\ \pi_{1} \leq 4 M \\ \pi_{m} \geq 2 M}} a^{o(\pi)} q^{|\pi|}=\sum_{\substack{\pi \pi 0 \\ \mid(\pi)=M \\ \pi_{1} \leq 4 j \\ \pi_{m} \geq 2 j}} a^{o(\pi)} q^{|\pi|} \tag{3.2}
\end{equation*}
$$

which has a similar resemblance (as is to be expected) to Guo's partition identity [7, Theorem 1.2]. The key difference is the inequality on the largest and smallest parts. This indeed causes a problem with using Chapman's bijection directly, but we have a simple solution to this. We say a nonempty partition π is in 0^{*} if its largest part $\pi_{1}=2 M$ is even, and the multiplicity of $2 M$ in π is at least the number of smaller parts in π. In our case we start with the left side of (3.2), and if parts are $\geq 2 r$, $r \in \mathbb{N}$, say, then $2 r$ is removed from each part to appear as a separate part. This process ensures that in the new partition, $2 r$

https://daneshyari.com/en/article/4646776

Download Persian Version:

https://daneshyari.com/article/4646776

Daneshyari.com

[^0]: E-mail address: alexpatk@hotmail.com.

