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1. Introduction

In [1] Andrews gives a wonderful introduction of Ramanujan’s “Lost” notebook, and lists some interesting identities
contained therein. One of which is the following beautiful symmetric identity [1, eq. (1.5)], where if
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then

fla, B)=f(B, ). (1.2)

The identity we present here is a refinement of the case where x = ¢, and y = ¢®. Andrews provides an elegant bijective proof
of this identity in [ 1, pg. 107] by taking the conjugate partition (see also Pak [8, pg. 18] for a nice presentation of Andrews’
bijection). We will also consider conjugate partitions in the third section, but will require a slightly different approach using
a 2-modular diagram (conceptually) to prove the following theorem bijectively. We first note some notation which may be
found in [2,6]. We put, throughout this paper, (a), = (a; @)n := [[g<gen(1 — aq®). Of course the reader should note the
infinite product that is obtained by passing the limit n — oo, which we denote by (a)so.

Theorem 1.1. We have, for arbitrary a, and |b| < 1, |t| < 1,
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2. An analytic proof

Since in [1] an analytic proof uses the g-binomial theorem, we decided to stay with our original use of a different
g-polynomial identity. Namely, we use the g-Pfaff-Saalschiitz [6, pg. 355, eq. (1.12)]
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The left side of (2.1) may be written
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Putting ¢ = bq in this identity we obtain
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Now we may use (2.3) to compute the following:
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shifting summation indices N — N + n and applying [5, pg. 18, eq. (16.3)] gives,
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By [5, pg. 4, eq. (6.2)] we compute this to be equal to
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which may be simplified to the desired identity,
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3. Abijective proof and some corollaries

We first start with some standard notation on partitions, which can be found in [5, pg. 37]. We write a partition 7 to
be a sequence which consists of nonnegative integers, say (1, 72, . .., T,) where we say each 77; for 1 < i < mis a ‘part’
with the largest 771, and smallest 77,,,. The number of such parts is denoted /(7 ), and the number of odd parts will be denoted
o(sr). Since Guo obtained a similar symmetric g-series identity using partitions where odd parts do not repeat, we consider
a similar approach. The main bijection appears to be due to R. Chapman in his proof of identities from [3] (see [4] and [6]
for more details). We will require an extra step in dealing with the inequality on parts that is in our identity, which is a key
difference, however. We may replace q by g in (1.3) and then replace a with ag~"' to obtain that
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Now, on the left hand side, a keeps track of the number of odd parts, b keeps track of the number of parts and t keeps
track of the largest part. It can then be seen that if we let O be the set of partitions where odd parts do not repeat, we have

that
Z a®gTl = Z a*™glml (3.2)

el
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which has a similar resemblance (as is to be expected) to Guo’s partition identity [7, Theorem 1.2]. The key difference is the
inequality on the largest and smallest parts. This indeed causes a problem with using Chapman’s bijection directly, but we
have a simple solution to this. We say a nonempty partition s is in O* if its largest part 71 = 2M is even, and the multiplicity
of 2M in 7 is at least the number of smaller parts in 7. In our case we start with the left side of (3.2), and if parts are > 2r,
r € N, say, then 2r is removed from each part to appear as a separate part. This process ensures that in the new partition, 2r
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