Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Colorings of hypergraphs with large number of colors

Ilia Akolzin^a, Dmitry Shabanov^{b,c,d,*}

^a Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Discrete Mathematics, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia

^b Moscow Institute of Physics and Technology, Laboratory of Advanced Combinatorics and Network Applications, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia

^c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Probability Theory, 119991, Leninskie gory 1, Moscow, Russia

^d National Research University Higher School of Economics (HSE), Faculty of Computer Science, 101000, Myasnitskaya Str. 20, Moscow, Russia

ARTICLE INFO

Article history: Received 30 October 2014 Received in revised form 19 June 2016 Accepted 20 June 2016 Available online 19 July 2016

Keywords: Colorings of hypergraphs Property B problem Turán numbers

ABSTRACT

The paper deals with the well-known problem of Erdős and Hajnal concerning colorings of uniform hypergraphs and some related questions. Let m(n, r) denote the minimum possible number of edges in an *n*-uniform non-*r*-colorable hypergraph. We show that for r > n,

$$c_1 \frac{n}{\ln n} \leqslant \frac{m(n,r)}{r^n} \leqslant C_1 n^3 \ln n,$$

where c_1 , $C_1 > 0$ are some absolute constants. Moreover, we obtain similar bounds for d(n, r), which is equal to the minimum possible value of the maximum edge degree in an *n*-uniform non-*r*-colorable hypergraph. If r > n, then

$$c_2 \frac{n}{\ln n} \leqslant \frac{d(n,r)}{r^{n-1}} \leqslant C_2 n^3 \ln n,$$

where c_2 , $C_2 > 0$ are some other absolute constants.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The paper deals the classical extremal combinatorial problem of P. Erdős and A. Hajnal concerning colorings of hypergraphs. Let us recall some definitions.

A vertex coloring of a hypergraph H = (V, E) is a mapping $f : V \to \mathbb{N}$. Coloring f is said to be *proper* for H if there are no monochromatic edges in this coloring. A hypergraph is called *r*-colorable if there is a proper coloring with *r* colors for it. *The chromatic number* of the hypergraph H, $\chi(H)$, is the least *r* such that H is *r*-colorable, i.e. the minimum number of colors required for a proper coloring of H.

E-mail addresses: iakolzin@gmail.com (I. Akolzin), dm.shabanov.msu@gmail.com (D. Shabanov).

http://dx.doi.org/10.1016/j.disc.2016.06.016 0012-365X/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Probability Theory, 119991, Leninskie gory 1, Moscow, Russia.

1.1. Erdős-Hajnal problem

n

In 1961 P. Erdős and A. Hajnal proposed (see [7]) to determine the value m(n, r) equal to the minimum possible number of edges in an *n*-uniform non-*r*-colorable hypergraph. Formally,

$$u(n, r) = \min\{|E| : H = (V, E) \text{ is } n \text{-uniform}, \chi(H) > r\}.$$

This problem, especially its 2-coloring case (Property B problem), has played a significant role in the development of probabilistic methods in combinatorics.

It is to easy to see that m(n, r) is finite and satisfies the inequality

$$m(n,r) \leqslant \binom{r(n-1)+1}{n}.$$
(1)

For the graph case, n = 2, the bound (1) gives the exact answer. However in 1963–1964 Erdős showed (see [5,6]) that for hypergraphs the behavior of m(n, 2) is quite different. By using probabilistic approach he proved that

$$2^{n-1} \leqslant m(n,2) \leqslant \frac{e}{4} n^2 2^n \ln 2 \left(1 + O\left(\frac{1}{n}\right)\right).$$

Similar estimates for m(n, r) obtained by the same way are the following (e.g., see [13]):

$$r^{n-1} \leqslant m(n,r) \leqslant \frac{e}{2} n^2 r^n \ln r \left(1 + O\left(\frac{1}{n}\right) \right).$$
⁽²⁾

The improvement of the lower bound in (2) has a long history (the reader is referred to the survey [13] for the details). The best current estimates for constant number of colors and large uniformity parameter were obtained by J. Radhakrishnan and A. Srinivasan (see [12]) for two colors, r = 2,

$$m(n,2) = \Omega\left(\left(\frac{n}{\ln n}\right)^{\frac{1}{2}} 2^n\right),\,$$

and by D. Cherkashin and J. Kozik (see [4]) for r > 2,

$$m(n,r) = \Omega\left(\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}r^{n-1}\right).$$
(3)

In the current paper we study the Erdős–Hajnal problem in the case when r is large and n small. It is easy to see that for fixed n and growing r, the simple bound (1) becomes better than (2) since its order of magnitude under these conditions is r^n , not $r^n \ln r$. However N. Alon showed in [1] that even for $r \gg n$, the estimate (1) is far away from the right answer. He proved that if $n \to \infty$ and $r/n \to \infty$ then

$$m(n,r) = O\left(n^{5/2}(\ln n)\left(\frac{3}{4}\right)^n \binom{r(n-1)+1}{n}\right) = O\left(n^2(\ln n)\left(\frac{3e}{4}\right)^n r^n\right).$$
(4)

The first result of the paper refines Alon's result (4) as follows.

Theorem 1. Suppose r > n. Then

$$m(n,r) = O\left(n^{7/2}(\ln n)\left(\frac{1}{e}\right)^n \binom{r(n-1)+1}{n}\right) = O\left(n^3(\ln n)r^n\right).$$
(5)

The bound (5) improves (2) for $\ln r = \Omega(n \ln n)$.

The first lower bound for m(n, r) of order r^n for large values of r (note that the bounds (2), (3) give only r^{n-1}) was also obtained by Alon in [1]. He showed that

$$m(n,r) > (n-1) \left\lceil \frac{r}{n} \right\rceil \left\lfloor \frac{n-1}{n} r \right\rfloor^{n-1},$$
(6)

which for r > n, implies that $m(n, r) = \Omega(r^n)$. A better result can be established by the help of a criterion for *r*-colorability of an arbitrary hypergraph in terms of so-called *ordered r*-chains proved by A. Pluhár in [11] (see Section 2 for the details). By using this criterion and some additional observation concerning the number of ordered *r*-chains Shabanov (see [13]) showed that for r > n,

$$m(n,r) = \Omega\left(n^{1/2}r^n\right).$$
⁽⁷⁾

Download English Version:

https://daneshyari.com/en/article/4646780

Download Persian Version:

https://daneshyari.com/article/4646780

Daneshyari.com