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a b s t r a c t

Let d1, d2, . . . , dk be k non-negative integers. A graph G is (d1, d2, . . . , dk)-colorable, if the
vertex set of G can be partitioned into subsets V1, V2, . . . , Vk such that the subgraph G[Vi]

induced by Vi has maximum degree at most di for i = 1, 2, . . . , k. Borodin, Montassier
and Raspaud asked: Is every planar graph without adjacent cycles of length at most five
3-colorable, i.e., (0, 0, 0)-colorable? This problem has now been answered negatively by
Cohen-Addad et al. who successfully constructed a non-3-colorable planar graph with
neither 4-cycles nor 5-cycles. Is every planar graph without adjacent cycles of length at
most five (1, 0, 0)-colorable? To this new problem, this paper proves that every planar
graph without adjacent cycles of length at most five is (1, 1, 0)-colorable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. For used but undefined terminology and notation
we refer the reader to the book by Bondy and Murty [2].

Let d1, d2, . . . , dk be k non-negative integers. A (d1, d2, . . . , dk)-coloring of a graph G = (V , E) is a mapping from the
vertex set V to a set of colors, say {1, 2, . . . , k}, such that every vertex colored i has at most di neighbors colored i for
i = 1, 2, . . . , k.

Clearly, (d1, d2, . . . , dk)-coloring generalizes the classical proper coloring of graphs. Thewell-known Four Color Theorem
says that every planar graph is (0, 0, 0, 0)-colorable. As for (0, 0, 0)-colorability of planar graphs, it is just the classical
3-colorability of planar graphs, which was proved to be an NP-complete problem by Garey et al. [15]. Let Ck denote a cycle
of length k. The famous Three Color Theorem [16] says that every C3-free planar graph is 3-colorable. Since K4, the complete
graph of order 4, is planar and not 3-colorable, it is easy to see that, for k ≥ 5, the condition Ck-free does not guarantee
the 3-colorability of planar graphs. Using K4 and quasi-edge, one can easily construct a C4-free planar graph, which is not
3-colorable, see [11]. On the other hand, all known non-3-colorable graphs contain 4-cycles as well as 5-cycles. Based on
this, Steinberg proposed the following pregnant conjecture:

Steinberg’s Conjecture ([2,25]). Every planar graph with neither 4-cycles nor 5-cycles is 3-colorable.

Progression towards Steinberg’s conjecture had been made in different directions. The first direction is pointed by Erdös
who suggested to find a constant C such that a planar graph without cycles of length from 4 to C is 3-colorable [25]. Abbott
and Zhou [1] proved that such a constant C does exist, and C ≤ 11. This result was later on improved to C ≤ 10 by
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Borodin [4]; to C ≤ 9 by Borodin [3] and independently by Sanders and Zhao [24]; and to C ≤ 7 by Borodin et al. [8]. It is
unknown whether C ≤ 6.

The second direction started from a paper by Chang et al. [12] where the (d1, d2, . . . , dk)-colorings are called near color-
ings, and the authors proved that all planar graphs with neither 4-cycles nor 5-cycles are (4, 0, 0)- and (2, 1, 0)-colorable.
This initial result has now been improved to the following theorem.

Theorem 1. Every planar graph with neither 4-cycles nor 5-cycles is (3, 0, 0)-, (1, 1, 0)-, (2, 0, 0)-colorable, see [17,18,31,13],
respectively.

In studying 3-colorability of planar graphs, a new interesting trend in the literature has been appeared. The started point
of the trend is a paper of Borodin and Raspaud [11], where the authors proved that every planar graph with neither 5-cycles
nor triangles at distance less than 4 is 3-colorable, and proposed the following Bordeaux conjecture:

Bordeaux conjecture. (1) Every planar graph with neither 5-cycles nor intersecting triangles is 3-colorable (the weak version).
(2) Every planar graph with neither 5-cycles nor adjacent triangles is 3-colorable (the strong version).

Note that, if the strong Bordeaux conjecture is true, then it implies its weak version and the Steinberg’s conjecture. Below
are some known results motivated by Bordeaux conjecture:

Theorem 2. (1) Every planar graph with neither 5-cycles nor triangles at distance 3 is 3-colorable [5,29];
(2) Every planar graph with neither 5-cycles nor triangles at distance 2 is 3-colorable [6];
(3) Every planar graph with neither 5-cycles nor adjacent triangles is (1, 1, 1)-colorable [30];
(4) Every planar graph without 5-cycles is (1, 1, 1)-colorable [28];
(5) Every planar graph with neither 5-cycles nor intersecting triangles is (1, 1, 0)-colorable [22];
(6) Every planar graph with neither 5-cycles nor intersecting triangles is (2, 0, 0)-colorable [21];
(7) Every planar graph with neither 5-cycles nor adjacent triangles is (1, 1, 0)-colorable [19].

It seems that no special reason supports the lacking of 5-cycles to guarantee the 3-colorability of planar graphs. Allowing
presence of cycles of any length, what can guarantee the 3-colorability of planar graphs? Borodin with his coauthors
proposed a challenging problem and an ultimate conjecture as follows (which can be viewed as new engines to push the
study of 3-colorability of planar graphs forward).

Problem 1 ([9]). Is every planar graph without adjacent cycles of length at most 5 3-colorable?

Nsk’s conjecture ([7]). Every planar graph with neither triangular 3-cycles nor triangular 5-cycles is 3-colorable.

Clearly Problem 1, as a relaxation of the Nsk’s conjecture, is still stronger than the strong Bordeaux conjecture. Earlier
related papers to Problem 1 or Nsk’s conjecture may be summarized in the following theorem.

Theorem 3. (1) Every planar graph without triangular 9−-cycles is 3-colorable [7];
(2) Every planar graph without adjacent 7−-cycles is 3-colorable [10,26];
(3) Every planar graph without triangular cycles of length from 4 to 7 is 3-colorable [8];
(4) Every planar graph without 5−-cycles at distance less than 4 is 3-colorable [23];
(5) Every planar graph without 5−-cycles at distance less than 2 is 3-colorable [20].

Very recently, Cohen-Addad et al. [14] surprisingly disproved Steinberg’s conjecture by constructing a non-3-colorable
planar graph with neither 4-cycles nor 5-cycles. Since Nsk’s conjecture, as well as Problem 1, is stronger than the strong
Bordeaux conjecture, while the later is stronger than Steinberg’s conjecture, all these appealing conjectures are disproved
by [14]! Nevertheless, One may asked many relaxed problems, one of them may be as follows:

Problem 2. Is every planar graph without adjacent cycles of length at most five is (1, 0, 0)-colorable?

In this paper, we will prove the following result.

Theorem 4. Every planar graph without adjacent cycles of length at most five is (1, 1, 0)-colorable.

This clearly provides a partial solution to Problem 2 and directly improves one result in Theorem 1.
The rest of this section is devoted to some definitions. A graph G is planar if it can be embedded into the plane so that its

edgesmeet only at their ends. Any such particular embedding of a planar graph is called a plane graph. For a plane graphG, we
use V , E and F to denote its vertex set, edge set and face set, respectively. For a vertex v ∈ V , the degree of v in G, denoted by
dG(v), or simply d(v), is the number of edges incidentwith v inG. The neighborhood of v inG, denotedNG(v), or simplyN(v),
consists of all vertices adjacent to v in G. Call v a k-vertex, or a k+-vertex, or a k−-vertex, if d(v) = k, or d(v) ≥ k, or d(v) ≤ k,
respectively. For a face f ∈ F , the number of edges on the boundary of f (where cut edge, if any, is counted twice), denoted
d(f ), is called the degree of f . Analogously, the notations above for verticeswill be applied to faces or cycles, too.Wewrite f =

[v1v2 . . . vk] if v1, v2, . . . , vk are consecutive vertices on f in a cyclic order, and say that f is a (d(v1), d(v2), . . . , d(vk))-face.
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