Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Planar graphs without 4-cycles adjacent to triangles are 4-choosable

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

ARTICLE INFO

ABSTRACT

adjacent to triangles is 4-choosable.

Article history: Received 24 January 2016 Received in revised form 13 June 2016 Accepted 13 June 2016 Available online 19 July 2016

Keywords: Planar graph Triangular 4-cycle Choosability Discharging

1. Introduction

All graphs considered are finite, simple and undirected. For used but undefined terminology and notation in this paper, we refer the reader to the book by Bondy and Murty [1].

Lam et al. proved that every planar graph without 4-cycles is 4-choosable (Lam et al., 1999).

In this paper, we improve this result by showing that every planar graph without 4-cycles

A list assignment of a graph G = (V, E) is a function L that assigns to each vertex $v \in V$ a list L(v) of colors. An L-coloring of G is a function $\lambda : V \longrightarrow \bigcup_{v \in V} L(v)$ such that $\lambda(v) \in L(v)$ for every $v \in V$ and $\lambda(u) \neq \lambda(v)$ whenever $uv \in E$. If G admits an L-coloring, then it is L-colorable. A graph G is k-choosable if it is L-colorable for every list assignment L with $|L(v)| \geq k$ for every $v \in V$.

All 2-choosable graphs have been characterized by Erdős et al. [2]. Thomassen [7] proved that every planar graph is 5-choosable. Voigt [8] showed that not all planar graphs are 4-choosable. Gutner [5] proved that the problems to determine whether a given planar graph is 3- or 4-choosable are NP-hard. So nice sufficient conditions for a planar graph to be 3- or 4-choosable are of certain interest.

This paper only concerns 4-choosability of planar graphs. Two cycles are *intersecting* if they have at least one vertex in common; *adjacent* if they have at least one edge in common. Let k be a positive integer. A cycle of length k is called a *k-cycle*. A 3-cycle is usually called a *triangle*. A cycle in *G* is called *triangular*, if it is adjacent to a triangle. Call a graph *G k-degenerate* if every subgraph of *G* has at least one vertex of degree k. Clearly, every *k*-degenerate graph is (k + 1)-choosable. In particular, every 3-degenerate graph is 4-choosable. By a simple discharging argument, it is easy to see that every planar graph without triangles is 3-degenerate, hence 4-choosable. Up to date, the 4-choosability of planar graphs without *k*-cycles proved non-trivially only for k = 4, 5, 6, 7. More precisely, every planar graph without 5-cycles [9], or without 6-cycles [4], is 3-degenerate, hence 4-choosable. It is interesting to notice that, for k = 4, 7, there are planar graphs without *k*-cycles which are not 3-degenerate. So the 4-choosability of planar graphs without 4-cycles [6], or without 7-cycles [3], is established not via 3-degeneracy. Although it is appealing to determine the set of all positive integers *K* such

* Corresponding author. E-mail addresses: 1281504153@qq.com (P. Cheng), chenmin@zjnu.cn (M. Chen), yqwang@zjnu.cn (Y. Wang).

http://dx.doi.org/10.1016/j.disc.2016.06.009 0012-365X/© 2016 Elsevier B.V. All rights reserved.

© 2016 Elsevier B.V. All rights reserved.

Fig. 1. A sink *P* with its sources in *G*.

that, for every $k \in K$, every planar graph without k-cycles is 4-choosable, it seems very difficult to attain. Are there any other nice sufficient conditions for a planar graph to be 4-choosable? Without intersecting short cycles, or more strongly, without adjacent short cycles might be good choice. Theorem A is the first example of such choice.

Theorem A. A planar graph is 4-choosable if it does not contain intersecting triangles [10].

Conjecture B. Every planar graph without adjacent triangles is 4-choosable [10,6].

Nearby Conjecture B, this paper proves a result as follows:

Theorem 1. Every planar graph without triangular 4-cycles is 4-choosable.

2. Structures

Suppose to the contrary that Theorem 1 is not true. Let G = (V, E) be a counterexample to Theorem 1 with the fewest vertices. Then *G* clearly has the following elementary properties:

- (1) G has no triangular 4-cycle.
- (2) G is connected.
- (3) *G* is not 4-choosable, i.e., there is a list assignment $L = \{L(v) | |L(v)| \ge 4, \forall v \in V\}$ such that *G* is not *L*-colorable. However,
- (4) any proper vertex-induced subgraph *G*′ of *G* is 4-choosable. In particular, *G*′ is *L*′-colorable, where *L*′ is the restriction of *L* on *G*′.

Embedding *G* into the plane, we get a plane graph G = (V, E, F), where *V*, *E* and *F* are the set of vertices, edges, and faces of *G*, respectively. For a vertex $v \in V$, the *degree* of *v*, denoted d(v), is the number of edges incident with v in *G*. For a face $f \in F$, the *degree* of *f*, denoted d(f), is the number of edges incident with *f* (a cut-edge is counted twice). A vertex $v \in V$ is called a *k*-, k^+ , or k^- -vertex if d(v) = k, $\geq k$, or $\leq k$, respectively. The notion of a *k*-, k^+ -, or k^- -face is similarly defined. For a face $f \in F$, if the vertices on *f* in a cyclic order are v_1, v_2, \ldots, v_k , then we write $f = [v_1v_2 \ldots v_k]$, and call *f* a $(d(v_1), d(v_2), \ldots, d(v_k))$ -face.

Using the minimality of G, i.e., the elementary property (3) and (4) above, the following lemma is straightforward.

Lemma 1 ([6]). *G* has no 3^- -vertex. \Box

Two faces in *G* are *adjacent* if they have at least one edge in common; *normally* adjacent if they are adjacent and have exactly two vertices in common. Call a 5-face *bad* if it is adjacent to at least four 3-faces, and incident with either five 4-vertices or four 4-vertices and one 5-vertex; *good* otherwise. Note that if a 5-face is adjacent to at most three 3-faces, or incident with one 6^+ -vertices or two 5^+ -vertices, then it is good.

Let *P* be a 5-face and *T* a 3-face in *G*. If *P* and *T* are adjacent, then they are normally adjacent since *G* has no triangular 4-cycles. The vertex v on *T* but not on *P* is called a *source* of *P*, if all of the following hold:

- *P* is a bad 5-face,
- if *P* has a 5-vertex *u*, then $uv \in T$.

If v is a source of P, then P is equivalently called a *sink* of v. Clearly, for k = 4, 5, a bad 5-face P with no 5-vertex has k sources if and only if it is adjacent to k 3-faces. Suppose a bad 5-face P is incident with one 5-vertex. Then it has one or two sources depending on the 5-vertex being incident with one or two 3-faces, respectively, see Fig. 1, where black points represent sources of P.

A face $f \in F$ is simple if its boundary b(f) is a cycle.

Lemma 2. Every 5⁻-face in G is simple.

Download English Version:

https://daneshyari.com/en/article/4646783

Download Persian Version:

https://daneshyari.com/article/4646783

Daneshyari.com