Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A graph *G* is said to be *K*1,*^r* -free if *G* does not contain an induced subgraph isomorphic to $K_{1,r}$. Let *k*, *r* be integers with $k \geq 2$, $r \geq 4$. In this paper, we prove that if *G* is a $K_{1,r}$ -free graph of order at least $(k - 1)(3r - 2) + 1$ with $\delta(G) \geq 3$, then *G* contains *k* vertex-disjoint copies of $K_{1,3}$. This result shows that Fujita's conjecture (2008) is true for $t = 3$ and $r \geq 4$.

Note Vertex-disjoint copies of $K_{1,3}$ in $K_{1,r}$ -free graphs^{*}

Suyun Jiang, Jin Yan[∗](#page-0-1)

School of Mathematics, Shandong University, Jinan 250100, China

a r t i c l e i n f o

a b s t r a c t

Article history: Received 7 December 2015 Received in revised form 11 June 2016 Accepted 18 June 2016 Available online 20 July 2016

*Keywords: K*1,*^r* -free graph Vertex-disjoint stars Minimum degree

1. Introduction

We discuss only finite simple graphs and use standard terminology and notation from [\[1\]](#page--1-0) except as indicated. For a graph *G*, we denote by *V*(*G*), *E*(*G*) and δ(*G*) the vertex set, the edge set and the minimum degree of *G*, respectively. We use *E* to denote the edge set of *G* if there is no confusion. A set of subgraphs of *G* is said to be disjoint if no two of them have any vertex in common. For disjoint subgraphs H_1 and H_2 of *G*, the union of H_1 and H_2 , denoted by $H_1 \cup H_2$, is the subgraph with vertex set *V*(*H*₁) ∪ *V*(*H*₂) and edge set *E*(*H*₁) ∪ *E*(*H*₂). By starting with *H*₁ ∪ *H*₂ and adding edges joining every vertex of *H*₁ to every vertex of *H*₂, we obtain the join of *H*₁ and *H*₂, denoted by *H*₁ + *H*₂. A graph *G* is said to be $K_{1,r}$ -free if *G* does not contain an induced subgraph isomorphic to *K*1,*^r* . In particular, a graph *G* is said to be claw-free when *G* is *K*1,3-free. Let *Kⁿ* be a complete graph of order *n*.

Sumner [\[7\]](#page--1-1) showed that a connected claw-free graph of order 2*k* contains a perfect matching, i.e., *k* disjoint copies of *K*2. Note that K_2 is $K_{1,1}$, Fujita considered the existence of *k* disjoint copies of $K_{1,t}$ ($t \geq 2$) in forbidden graphs. In [\[3,](#page--1-2)[4\]](#page--1-3), Fujita proposed the following conjecture:

Conjecture 1.1 (*Fujita, [\[3](#page--1-2)[,4\]](#page--1-3)*). Let k, r, t be integers with $k \geq 2$, $r \geq 3$ and $t \geq 2$. If G is a K_{1,*r*}-free graph of order at least $(k-1)(t(r-1)+1) + 1$ with $\delta(G) \geq t$, then G contains k disjoint copies of $K_{1,t}$.

If the conjecture is true, the bound on $|V(G)|$ is best possible. To see this, let $B_i = K_t$ for each *i* with $1 \le i \le r - 1$, and consider $G = \bigcup_{i=1}^{k-1} A_i$, where $A_i = K_1 + \bigcup_{j=1}^{r-1} B_j$ for each i with $1 \le i \le k-1$. Then G is a $K_{1,r}$ -free graph of order $(k-1)(t(r-1)+1)$ with $\delta(G) \geq t$. It is easy to check that *G* does not contain *k* disjoint copies of $K_{1,t}$.

Fujita [\[3\]](#page--1-2) confirmed that the conjecture is true for $t = 2$, and proved the following theorem in [\[4\]](#page--1-3), which shows that [Conjecture 1.1](#page-0-2) is true for $t = r = 3$ because $K_1 + (K_1 \cup K_2)$ contains $K_{1,3}$.

Theorem 1.2 (*Fujita,* [\[4\]](#page--1-3)). Let k be an integer with $k \ge 2$. If G is a claw-free graph of order at least $7k - 6$ with $\delta(G) \ge 3$, then *G* contains *k* disjoint copies of $K_1 + (K_1 \cup K_2)$.

∗ Corresponding author.

<http://dx.doi.org/10.1016/j.disc.2016.06.015> 0012-365X/© 2016 Elsevier B.V. All rights reserved.

© 2016 Elsevier B.V. All rights reserved.

 $\overline{\mathbf{x}}$ This work is supported by National Natural Science Foundation of China (No. 11271230).

E-mail address: yanj@sdu.edu.cn (J. Yan).

Recently, Gao and Zou proved a similar result for *K*1,4-free graph.

Theorem 1.3 (*Gao and Zou, [\[5\]](#page--1-4)*). Let $k > 2$ be an integer. If G is a K_{1,4}-free graph of order at least 11 $k - 10$ with $\delta(G) > 4$, *then G contains k disjoint copies of* $K_1 + (K_1 \cup K_2)$.

In this paper, we prove the following result, combined with [Theorem 1.2,](#page-0-3) we see that [Conjecture 1.1](#page-0-2) is true for $t = 3$.

Theorem 1.4. Let k, r be integers with $k > 2$, $r > 4$. If G is a K₁,*r*-free graph of order at least $(k-1)(3r-2)+1$ with $\delta(G) > 3$, *then G contains k disjoint copies of K*1,3*.*

There are some results concerning the existence of *k* disjoint copies of K_3 in forbidden graphs. Wang [\[8\]](#page--1-5) proved that if *G* is a claw-free graph of order at least $6k - 5$ with $\delta(G) > 3$, then *G* contains *k* disjoint copies of K_3 . In the same paper, Wang proposed the following conjecture: For each integer $t \geq 4$, there exists an integer k_t depending on t only such that $h(t, k) = 2t(k-1)$ for all integers $k \geq k_t$, where $h(t, k)$ is the smallest integer m such that every $K_{1,t}$ -free graph of order greater than *m* and with minimum degree at least*t* contains *k* disjoint triangles. However, in [\[9\]](#page--1-6), Zhang et al. totally disproved the conjecture and obtained a lower bound and an upper bound of *h*(*t*, *k*).

Ramsey number is a very useful tool in this paper. For graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest positive integer *n* such that every graph *G* of order at least *n* contains G_1 or the complement of *G* contains G_2 . The following is a well-known result of Chvátal [\[2\]](#page--1-7).

Theorem 1.5 (*Chvátal, [\[2\]](#page--1-7)*). *Let* T_n *be a tree of order n. Then* $R(T_n, K_m) = (n - 1)(m - 1) + 1$.

In particular, we have the following Corollary (also see [\[6\]](#page--1-8) in Page 26).

Corollary 1.6. $R(K_{1,n}, K_m) = n(m-1) + 1$.

We use the following notations in this paper. For a subset *U* of *V*(*G*), *G*[*U*] denotes the subgraph of *G* induced by *U*. If H is a subgraph of G, written as $G \supseteq H$, and let $G - H = G[V(G) - V(H)]$. For a subgraph H of G and a vertex $x \in V(G)$, the neighborhood of *x* in *H* is denoted by *N*(*x*, *H*) and let $d(x, H) = |N(x, H)|$. For disjoint subgraphs H_1 and H_2 of *G*, we let $E(H_1, H_2)$ denote the set of edges of *G* joining a vertex in H_1 and a vertex in H_2 , and $N(H_1, H_2)$ denote the set of neighbors of *H*₁ in *H*₂. Clearly, $|N(H_1, H_2)| = |\cup_{v \in H_1} N(v, H_2)| \le \sum_{v \in H_1} d(v, H_2)$.

2. Proof of [Theorem 1.4](#page-1-0)

Let *k*, *r* be integers with $k \ge 2$, $r \ge 4$. Let *G* be a $K_{1,r}$ -free graph of order at least $(k-1)(3r-2)+1$ with $\delta(G) \ge 3$. Take *s* disjoint subgraphs C_1, C_2, \ldots, C_s such that C_i contains $K_{1,3}$ as a spanning subgraph for each *i* with $1 \le i \le s$. Let $C = \bigcup_{i=1}^s C_i$ and $H = G - C$. We choose C_1, C_2, \ldots, C_s so that

s is maximum, (1)

and subject to (1) ,

 \sum *i*=1 $|E(C_i)|$ is maximum. (2)

We may assume that $s \le k - 1$. By the maximality of *s*, *H* does not contain a copy of $K_{1,3}$. Thus we have $\Delta(H) \le 2$. Note that $\delta(G) \geq 3$, we see $d(v, C) \geq 1$ for each $v \in V(H)$. It follows that $|N(C, H)| = |H| \geq (k-1)(3r-2)+1-4s \geq (3r-6)s+1$ as $s \leq k-1$. Note that $\sum_{i=1}^{s} |N(C_i, H)| \geq |N(C, H)|$, so there exists a C_i , say C_1 , such that $|N(C_1, H)| \geq 3r - 5$.

Let $V(C_1) = \{a, b, c, d\}$ with $d(a, C_1) = 3$. By the maximality of *s*, we see $G[V(H \cup C_1)]$ does not contain two disjoint copies of $K_{1,3}$. We first prove the following claims.

Claim 2.1. If $|N(x, H)| \ge 3$ for some $x \in V(C_1)$, we may assume that $\{x_1, x_2, x_3\} \subseteq N(x, H)$, then $|N(y, H - \{x_1, x_2, x_3\})| \le 2$ *for each* $y \in V(C_1) - x$.

Proof. If $|N(y, H - \{x_1, x_2, x_3\})| \ge 3$ for some $y \in V(C_1) - x$, then $G[\{x, x_1, x_2, x_3\}] \supseteq K_{1,3}$ and $G[N(y, H - \{x_1, x_2, x_3\}) \cup \{y\}] \supseteq K_{1,3}$ *K*_{1,3}, it follows that *G*[*V*(*H* ∪ *C*₁)] contains two disjoint copies of *K*_{1,3}, this is contrary to the maximality of *s*. \Box

Claim 2.2. If $E(C_1) = \{ab, ac, ad, bc, bd\}$ and $|N(x, H)| \ge 4$ for some $x \in \{a, b\}$, then $|N(y, H)| \le 1$ for each $y \in \{c, d\}$.

Proof. Note that $d(a, C_1) = d(b, C_1) = 3$ and $d(c, C_1) = d(d, C_1) = 2$. We see that a and b are symmetric, and c and d are symmetric. We may assume $|N(a, H)| \geq 4$. If $|N(c, H)| \geq 2$ or $|N(d, H)| \geq 2$, by symmetry, we may assume $|N(c, H)| \geq 2$. It is easy to see that $G[N(c, H) \cup \{c, b\}]$ contains a copy of $G_1 \cong K_{1,3}$ such that $\{c, b\} \subseteq V(G_1)$. Thus $|N(a, H) - V(G_1)| \geq 2$. So we have $G[(N(a, H) - V(G_1)) \cup \{a, d\}] \supseteq K_{1,3}$, it follows that $G[V(H \cup C_1)]$ contains two disjoint copies of $K_{1,3}$, this is contrary to the maximality of *s*.

Download English Version:

<https://daneshyari.com/en/article/4646786>

Download Persian Version:

<https://daneshyari.com/article/4646786>

[Daneshyari.com](https://daneshyari.com)