Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Vertex-disjoint copies of $K_{1,3}$ in $K_{1,r}$ -free graphs*

Suyun Jiang, Jin Yan*

School of Mathematics, Shandong University, Jinan 250100, China

ARTICLE INFO

ABSTRACT

Article history: Received 7 December 2015 Received in revised form 11 June 2016 Accepted 18 June 2016 Available online 20 July 2016

*Keywords: K*_{1,*r*}-free graph Vertex-disjoint stars Minimum degree

1. Introduction

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. For a graph *G*, we denote by V(G), E(G) and $\delta(G)$ the vertex set, the edge set and the minimum degree of *G*, respectively. We use *E* to denote the edge set of *G* if there is no confusion. A set of subgraphs of *G* is said to be disjoint if no two of them have any vertex in common. For disjoint subgraphs H_1 and H_2 of *G*, the union of H_1 and H_2 , denoted by $H_1 \cup H_2$, is the subgraph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1) \cup E(H_2)$. By starting with $H_1 \cup H_2$ and adding edges joining every vertex of H_1 to every vertex of H_2 , we obtain the join of H_1 and H_2 , denoted by $H_1 + H_2$. A graph *G* is said to be $K_{1,r}$ -free if *G* does not contain an induced subgraph isomorphic to $K_{1,r}$. In particular, a graph *G* is said to be claw-free when *G* is $K_{1,3}$ -free. Let K_n be a complete graph of order *n*.

Sumner [7] showed that a connected claw-free graph of order 2k contains a perfect matching, i.e., k disjoint copies of K_2 . Note that K_2 is $K_{1,1}$, Fujita considered the existence of k disjoint copies of $K_{1,t}$ ($t \ge 2$) in forbidden graphs. In [3,4], Fujita proposed the following conjecture:

Conjecture 1.1 (Fujita, [3,4]). Let k, r, t be integers with $k \ge 2$, $r \ge 3$ and $t \ge 2$. If G is a $K_{1,r}$ -free graph of order at least (k-1)(t(r-1)+1)+1 with $\delta(G) \ge t$, then G contains k disjoint copies of $K_{1,t}$.

If the conjecture is true, the bound on |V(G)| is best possible. To see this, let $B_i = K_t$ for each i with $1 \le i \le r - 1$, and consider $G = \bigcup_{i=1}^{k-1} A_i$, where $A_i = K_1 + \bigcup_{j=1}^{r-1} B_j$ for each i with $1 \le i \le k - 1$. Then G is a $K_{1,r}$ -free graph of order (k-1)(t(r-1)+1) with $\delta(G) \ge t$. It is easy to check that G does not contain k disjoint copies of $K_{1,t}$.

Fujita [3] confirmed that the conjecture is true for t = 2, and proved the following theorem in [4], which shows that Conjecture 1.1 is true for t = r = 3 because $K_1 + (K_1 \cup K_2)$ contains $K_{1,3}$.

Theorem 1.2 (Fujita, [4]). Let k be an integer with $k \ge 2$. If G is a claw-free graph of order at least 7k - 6 with $\delta(G) \ge 3$, then G contains k disjoint copies of $K_1 + (K_1 \cup K_2)$.

http://dx.doi.org/10.1016/j.disc.2016.06.015 0012-365X/© 2016 Elsevier B.V. All rights reserved.

FISEVIER

© 2016 Elsevier B.V. All rights reserved.

A graph G is said to be $K_{1,r}$ -free if G does not contain an induced subgraph isomorphic to

 $K_{1,r}$. Let k, r be integers with $k \ge 2, r \ge 4$. In this paper, we prove that if G is a $K_{1,r}$ -free graph of order at least (k-1)(3r-2) + 1 with $\delta(G) \ge 3$, then G contains k vertex-disjoint

copies of $K_{1,3}$. This result shows that Fujita's conjecture (2008) is true for t = 3 and $r \ge 4$.

 $^{^{}m in}$ This work is supported by National Natural Science Foundation of China (No. 11271230).

^{*} Corresponding author.

E-mail address: yanj@sdu.edu.cn (J. Yan).

Recently, Gao and Zou proved a similar result for $K_{1,4}$ -free graph.

Theorem 1.3 (Gao and Zou, [5]). Let k > 2 be an integer. If G is a $K_{1,4}$ -free graph of order at least 11k - 10 with $\delta(G) > 4$, then G contains k disjoint copies of $K_1 + (K_1 \cup K_2)$.

In this paper, we prove the following result, combined with Theorem 1.2, we see that Conjecture 1.1 is true for t = 3.

Theorem 1.4. Let k, r be integers with k > 2, r > 4. If G is a $K_{1,r}$ -free graph of order at least (k-1)(3r-2) + 1 with $\delta(G) > 3$, then G contains k disjoint copies of $K_{1,3}$.

There are some results concerning the existence of k disjoint copies of K_3 in forbidden graphs. Wang [8] proved that if *G* is a claw-free graph of order at least 6k - 5 with $\delta(G) > 3$, then *G* contains *k* disjoint copies of K_3 . In the same paper, Wang proposed the following conjecture: For each integer t > 4, there exists an integer k_t depending on t only such that h(t, k) = 2t(k-1) for all integers $k \ge k_t$, where h(t, k) is the smallest integer *m* such that every $K_{1,t}$ -free graph of order greater than m and with minimum degree at least t contains k disjoint triangles. However, in [9], Zhang et al. totally disproved the conjecture and obtained a lower bound and an upper bound of h(t, k).

Ramsey number is a very useful tool in this paper. For graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest positive integer n such that every graph G of order at least n contains G_1 or the complement of G contains G_2 . The following is a well-known result of Chvátal [2].

Theorem 1.5 (*Chvátal*, [2]). Let T_n be a tree of order *n*. Then $R(T_n, K_m) = (n - 1)(m - 1) + 1$.

In particular, we have the following Corollary (also see [6] in Page 26).

Corollary 1.6. $R(K_{1,n}, K_m) = n(m-1) + 1$.

We use the following notations in this paper. For a subset U of V(G), G[U] denotes the subgraph of G induced by U. If *H* is a subgraph of *G*, written as $G \supseteq H$, and let G - H = G[V(G) - V(H)]. For a subgraph *H* of *G* and a vertex $x \in V(G)$, the neighborhood of x in H is denoted by N(x, H) and let d(x, H) = |N(x, H)|. For disjoint subgraphs H_1 and H_2 of G, we let $E(H_1, H_2)$ denote the set of edges of G joining a vertex in H_1 and a vertex in H_2 , and $N(H_1, H_2)$ denote the set of neighbors of H_1 in H_2 . Clearly, $|N(H_1, H_2)| = |\bigcup_{v \in H_1} N(v, H_2)| \le \sum_{v \in H_1} d(v, H_2)$.

2. Proof of Theorem 1.4

Let k, r be integers with $k \ge 2$, $r \ge 4$. Let G be a $K_{1,r}$ -free graph of order at least (k-1)(3r-2) + 1 with $\delta(G) \ge 3$. Take s disjoint subgraphs C_1, C_2, \ldots, C_s such that C_i contains $K_{1,3}$ as a spanning subgraph for each *i* with $1 \le i \le s$. Let $C = \bigcup_{i=1}^{s} C_i$ and H = G - C. We choose C_1, C_2, \ldots, C_s so that

s is maximum,

and subject to (1).

 $\sum^{s} |E(C_i)| \text{ is maximum.}$ (2)

(1)

We may assume that $s \le k - 1$. By the maximality of s, H does not contain a copy of $K_{1,3}$. Thus we have $\Delta(H) \le 2$. Note that $\delta(G) \ge 3$, we see $d(v, C) \ge 1$ for each $v \in V(H)$. It follows that $|N(C, H)| = |H| \ge (k-1)(3r-2)+1-4s \ge (3r-6)s+1$ as $s \le k - 1$. Note that $\sum_{i=1}^{s} |N(C_i, H)| \ge |N(C, H)|$, so there exists a C_i , say C_1 , such that $|N(C_1, H)| \ge 3r - 5$. Let $V(C_1) = \{a, b, c, d\}$ with $d(a, C_1) = 3$. By the maximality of s, we see $G[V(H \cup C_1)]$ does not contain two disjoint

copies of $K_{1,3}$. We first prove the following claims.

Claim 2.1. If $|N(x, H)| \ge 3$ for some $x \in V(C_1)$, we may assume that $\{x_1, x_2, x_3\} \subseteq N(x, H)$, then $|N(y, H - \{x_1, x_2, x_3\})| \le 2$ for each $y \in V(C_1) - x$.

Proof. If $|N(y, H - \{x_1, x_2, x_3\})| \ge 3$ for some $y \in V(C_1) - x$, then $G[\{x, x_1, x_2, x_3\}] \supseteq K_{1,3}$ and $G[N(y, H - \{x_1, x_2, x_3\}) \cup \{y\}] \supseteq V(C_1) - X$. $K_{1,3}$, it follows that $G[V(H \cup C_1)]$ contains two disjoint copies of $K_{1,3}$, this is contrary to the maximality of s.

Claim 2.2. If $E(C_1) = \{ab, ac, ad, bc, bd\}$ and |N(x, H)| > 4 for some $x \in \{a, b\}$, then |N(y, H)| < 1 for each $y \in \{c, d\}$.

Proof. Note that $d(a, C_1) = d(b, C_1) = 3$ and $d(c, C_1) = d(d, C_1) = 2$. We see that a and b are symmetric, and c and d are symmetric. We may assume $|N(a, H)| \ge 4$. If $|N(c, H)| \ge 2$ or $|N(d, H)| \ge 2$, by symmetry, we may assume $|N(c, H)| \ge 2$. It is easy to see that $G[N(c, H) \cup \{c, b\}]$ contains a copy of $G_1 \cong K_{1,3}$ such that $\{c, b\} \subseteq V(G_1)$. Thus $|N(a, H) - V(G_1)| \ge 2$. So we have $G[(N(a, H) - V(G_1)) \cup \{a, d\}] \supseteq K_{1,3}$, it follows that $G[V(H \cup C_1)]$ contains two disjoint copies of $K_{1,3}$, this is contrary to the maximality of *s*. \Box

Download English Version:

https://daneshyari.com/en/article/4646786

Download Persian Version:

https://daneshyari.com/article/4646786

Daneshyari.com