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a b s t r a c t

Based on Y. Kawahara’s characterisation of the cardinality of relations we derive some
fundamental properties of cardinalities concerning vectors, points and mapping-related
relations. As applications of these results we verify some properties of linear orders and
graphs in a calculational manner. These include the cardinalities of rooted trees and some
estimates concerning graphparameters.We also calculationally prove the result of D. Kőnig
that in bipartite graphs the matching number equals the vertex cover number.
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1. Introduction

Based on pioneering work of mainly G. Boole, A. De Morgan, C.S. Peirce and E. Schröder in the 19th century, the modern
axiomatic investigations of the calculus of binary relations startedwith the seminal paper [28] of A. Tarski on relation algebra
in the middle of the 20th century. Since the 1970s this algebraic structure has widely been used by many mathematicians,
engineers and computer scientists as a conceptual and methodological base for problem solving in areas like graph theory,
theory of orders and lattices, combinatorics, preference and scaling, social choice theory, algorithmics, data bases, and
semantics of programming languages. A lot of examples and references to relevant literature can be found e.g., in [2,8,10,
11,25,27] and the proceedings of the conference series ‘‘Relational and Algebraic Methods in Computer Science’’.

The use of relation algebra brings many advantages: Concerning modelling, it is mainly due to the fact that relations and
many objects of discrete mathematics are essentially the same or closely related. For instance, a directed graph is nothing
else than a relation on a non-empty and finite set of vertices, and also for other classes of graphs there are simple and elegant
ways tomodel themwith relations, as shown in [25,27], for example. Secondly, the use of relation algebra frequently leads to
very precise proofs, where calculational transformations constitute the decisive parts. This has the advantage of clarifying
the proof structure frequently, reducing the danger of doing wrong proof steps and to opening the possibility for proof
mechanisation, for instance, by automated theorem provers or proof assistants. See e.g., [3,4,7,13,15] for the latter. Thirdly,
the set-theoretic standardmodel of relation algebra can easily and efficiently be implemented. This supports prototyping and
validation tasks in a significant manner, e.g., by the BDD-based special-purpose computer algebra system RelView (see [6]).
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Experience has also shown that for advanced applications the ‘‘classical’’ homogeneous relation algebra in the sense
of [28] (and further developed in [19,20,29], for example) has to be modified. To be able to treat not only relations on
one universe but on different sets, in [24] types have been introduced, leading to the notion of a heterogeneous relation
algebra. Based on this and following the manner how K.C. Ng and A. Tarski added in [30] the Kleene star as an additional
operation for reflexive–transitive closures to homogeneous relation algebra, relational products, sums and embeddings have
been axiomatised to deal, for example, with n-ary functions, case distinctions and restrictions, respectively. Set-theoretic
membership relations and some variants (on function domains) have also been introduced in the same way, mainly for the
use in relation-algebraic semantics. See [2,25,27,31] for details and references to relevant literature.

In this paper we investigate an extension of heterogeneous relation algebra. We are concerned with a cardinality
operation on relations, the axiomatisation of which originates from [16]. In this paper Y. Kawahara acknowledges the
considerable influence of [27] to the formal relation-algebraic study of graphs. But he also mentions that ‘‘the cardinality of
relations is treated rather implicitly or intuitively’’ [16, Page 251]. Therefore, he develops a cardinality operation on relations
and demonstrates by some applications in basic graph theory that its axiomatic specification can be used to reason about
cardinalities of relations in a purely calculational and algebraic manner. In [5] the axiomatisation of [16] is applied for the
formal assertion-based development and verification of relational approximation algorithms, where cardinalities play an
important role when proving the desired approximation bound.

The present paper is a continuation of [16,5]. We extend the stock of fundamental properties of cardinalities of relations
by several results that concern vectors, points and mapping-related relations. In this regard the point axiom and the
decomposition of relations into disjoint unions play an important role. To show the usefulness of the properties, we
present some applications. The remainder of the paper is organised as follows: In Sections 2 and 3 we shortly recall those
fundamentals of heterogeneous relation algebra we will need in the following sections; this includes the point axiom and
some important consequences. Then, in Section 4, we present Y. Kawahara’s axiomatisation of the cardinality operation on
relations and some general properties. Specific properties of the cardinality operation with regard to vectors and points and
of relationswhich are related tomappings are presented in Sections 5 and 6, respectively. Some simple applications that base
on these properties are shown in Section 7, e.g., calculational proofs of cardinalities of rooted trees and of some estimates
concerning well-known graph parameters. In Section 8we apply our results to amore complex example.We calculationally
prove the theorem of D. Kőnig saying that in bipartite graphs the matching number and the vertex cover number coincide.
Section 9 contains some concluding remarks.

2. Relation-algebraic prerequisites

In this section we recall the fundamentals of relation algebra based on the heterogeneous approach of [24] and further
developed especially in [25,27]. Set-theoretic relations form the standard model of relation algebras. We assume the
reader to be familiar with the basic operations on them, viz. RT (transposition), R (complementation), R ∪ S (union), R ∩ S
(intersection), R;S (composition), the predicates R ⊆ S (inclusion) and R = S (equality), and the special relations O (empty
relation), L (universal relation) and I (identity relation). Relations of the same type equipped with the Boolean operations,
the inclusion and the constants O and L form complete Boolean lattices. Some further well-known algebraic properties of
relations are RT = R

T
, (R∪S)T = RT

∪ST, (R∩S)T = RT
∩ST, (RT)T = R, (R;S)T = ST

;RT, and themonotonicity of transposition,
union, intersection and composition.

The theoretical framework for these laws (and many others) to hold is that of a (heterogeneous) relation algebra in the
sense of [24,25,27], with typed relations as elements. This implies that each relation has a source and a target and we write
R : X ↔ Y to express that R is of type X ↔ Y with source X and target Y . In case of set-theoretic relations R : X ↔ Y means
that R is a subset of the direct product X × Y and then X and Y are also called carrier sets. As constants and operations of
a relation algebra we have those of set-theoretic relations, where we frequently overload the symbols O, L and I, i.e., avoid
the binding of types to them. Only when helpful or necessary we use indices to annotate types such as LXY for the universal
relation of type X ↔ Y and IX for the identity relation of type X ↔ X . The axiomatisation of relation algebra wewill present
now follows [25,27].

Axioms 2.1 (Relation Algebra). The following hold:

(R1) For all types X ↔ Y the relations of type X ↔ Y constitute a complete Boolean lattice under the Boolean operations,
the inclusion, the empty relation and the universal relation.

(R2) Composition of relations is associative and the identity relations are neutral elements with respect to composition.
(R3) For all relations Q , R and S (with appropriate types) the three inclusions Q ;R ⊆ S, Q T

;S ⊆ R and S;RT
⊆ Q are

equivalent.
(R4) For all relations R and all universal relations (with appropriate types) from R ≠ O it follows L;R;L = L.

In [27] the equivalences of (R3) are called the Schröder rules and the implication of (R4) is called the Tarski rule. In the
relation-algebraic proofs of this paper we will mention only applications of (R3), (R4) and ‘‘non-obvious’’ consequences of
the axioms, like the inclusion

Q ;R ∩ S ⊆ (Q ∩ S;RT);(R ∩ Q T
;S), (1)
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