Note

Cycles through an arc in regular 3-partite tournaments

Qiaoping Guo*, Linan Cui, Wei Meng
School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, China

ARTICLE INFO

Article history:

Received 6 February 2015
Received in revised form 10 June 2015
Accepted 11 June 2015
Available online 30 July 2015

Keywords:

Multipartite tournament
Regular multipartite tournament
3-partite tournament
Cycle

Abstract

A c-partite tournament is an orientation of a complete c-partite graph. In 2006, Volkmann conjectured that every arc of a regular 3-partite tournament D is contained in an m-, $(m+1)$ - or $(m+2)$-cycle for each $m \in\{3,4, \ldots,|V(D)|-2\}$, and he also proved this conjecture for $m=3,4,5$. In 2012, Xu et al. proved that every arc of a regular 3-partite tournament is contained in a 5 - or 6 -cycle, and in the same paper, the authors also posed the following conjecture:

Conjecture 1. If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained in a $3 k$ - or $(3 k+1)$-cycle for $k=1,2, \ldots, r-1$.

It is known that Conjecture 1 is true for $k=1$. In this paper, we prove Conjecture 1 for $k=2$, which implies that Volkmann's conjecture for $m=6$ is correct.

© 2015 Elsevier B.V. All rights reserved.

1. Terminology and introduction

This paper will generally follow the notation and terminology defined in [1], and we assume that all digraphs are finite without loops or multiple arcs. Let D be a digraph. If $x y$ is an arc of D, then we write $x \rightarrow y$ and say x dominates y. If X and Y are two disjoint vertex subsets of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$, otherwise denoted by $X \nrightarrow Y$. If D^{\prime} is a vertex set or a subdigraph of D, then we define $N_{D^{\prime}}^{+}(x)$ as the set of vertices of D^{\prime} which are dominated by x and $N_{D^{\prime}}^{-}(x)$ as the set of vertices of D^{\prime} which dominate x. The numbers $d_{D^{\prime}}^{+}(x)=\left|N_{D^{\prime}}^{+}(x)\right|$ and $d_{D^{\prime}}^{-}(x)=\left|N_{D^{\prime}}^{-}(x)\right|$ are called the out-degree and in-degree of x in D^{\prime}, respectively.

A c-partite tournament is an orientation of a complete c-partite graph, and an m-cycle is a directed cycle of length m. A digraph D is regular, if $d^{+}(x)=d^{-}(x)=d^{+}(y)=d^{-}(y)$ for all $x, y \in V(D)$.

Multipartite tournaments have been got extensive attention since they were introduced by Moon in 1968. However, many statements on cycles in c-partite tournaments are only valid for $c \geq 4$. At present, the results on 3-partite tournaments are still very few.

For cycles through an arc in a regular 3-partite tournament, Volkmann [2] presented the following conjecture.
Conjecture 1.1 ([2]). If D is a regular 3-partite tournament, then every arc of D is contained in an $m-,(m+1)$ - or ($m+2$)-cycle for each $m \in\{3,4, \ldots,|V(D)|-2\}$.

In the same paper, he proved this conjecture for $m=3,4,5$. In 2012, Xu et al. generalized Volkmann's results and proved that every arc of a regular 3-partite tournament is contained in a 5- or 6-cycle, which also implies that the following Conjecture 1.2 is correct for $k=2$.

[^0]Conjecture 1.2 ([4]). If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained in $a(3 k-1)$ - or $3 k$-cycle for $k=2,3, \ldots, r$.

In the same paper, Xu et al. also posed the following Conjecture 1.3.
Conjecture 1.3 ([4]). If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained in a $3 k$ - or $(3 k+1)-$ cycle for $k=1,2, \ldots, r-1$.

Volkmann [2] proved that every arc of a regular 3-partite tournament D is contained in a 3- or 4-cycle, which implies that Conjecture 1.3 is true for $k=1$. In this paper, we prove Conjecture 1.3 for $k=2$ and Conjecture 1.1 for $m=6$.

More information on cycles of 3-partite tournaments are contained in the paper by Volkmann [3].

2. Main result

The following two lemmas are important for the proof of main result.
Lemma 2.1 ([4]). If D is an r-regular 3-partite tournament with partite sets V_{1}, V_{2}, V_{3} and v is a vertex of D, then $\left|V_{1}\right|=\left|V_{2}\right|=$ $\left|V_{3}\right|=r$ and $d^{+}(v)=d^{-}(v)=r$.

Lemma 2.2 ([4]). If D is an r-regular 3-partite tournament with partite sets U, V, W and u is a vertex of U, then $d_{V}^{+}(u)=d_{W}^{-}(u)$ and $d_{V}^{-}(u)=d_{W}^{+}(u)$.

Theorem 2.1. If D is an r-regular 3-partite tournament with $r \geq 3$, then every arc of D is contained in a 6- or 7-cycle.
Proof. Let V_{1}, V_{2}, V_{3} be the partite sets of D, and let $a b$ be an arbitrary arc of D. Without loss of generality, we suppose that $a \in V_{1}$ and $b \in V_{2}$. We distinguish the following two cases.

Case $1 V_{3} \rightarrow a \rightarrow V_{2}$.
By Lemma 2.2, we have $d_{V_{3}}^{+}(x) \geq 1$ and $d_{V_{2}}^{-}(y) \geq 1$ for any $x \in V_{2}, y \in V_{3}$. So there are at least r arcs from V_{2} to V_{3}. If there are exactly r arcs from V_{2} to V_{3}, we array the vertices of V_{2} into $b_{1}, b_{2}, \ldots, b_{r}$ with $b_{1}=b$ and the vertices of V_{3} into $c_{1}, c_{2}, \ldots, c_{r}$ such that $b_{i} \rightarrow c_{i}$ and $V_{3}-\left\{c_{i}\right\} \rightarrow b_{i}, i=1,2, \ldots, r$. Obviously, $a b c_{1} b_{2} c_{2} b_{3} c_{3} a$ is a 7-cycle through $a b$. Therefore, we assume that there are more than r arcs from V_{2} to V_{3}.

If $V_{2} \nrightarrow N_{V_{3}}^{+}(b)$, then there exists a vertex $x \in N_{V_{3}}^{+}(b)$ and a vertex $y \in V_{2}$ such that $x \rightarrow y$. By Lemma 2.2, there is an arc $y z$ where $z \in V_{1}-\{a\}$. When $V_{3}-\{x\} \leftrightarrow z$, there is a vertex u in $V_{3}-\{x\}$ such that $z \rightarrow u$. So abxyzua is a 6-cycle through $a b$. When $V_{3}-\{x\} \rightarrow z$, we have $z \rightarrow V_{2}-\{y\}$ (otherwise $\left|N^{-}(z)\right|>r$, a contradiction). Let $u \in V_{2}-\{b, y\}$ be arbitrary. Since $\{a, z\} \rightarrow u$ and by Lemma 2.2, there is an arc $u v$ where $v \in V_{3}-\{x\}$ and abxyzuva is a 7-cycle through $a b$.

We assume that $V_{2} \rightarrow N_{V_{3}}^{+}(b)$. If $N_{V_{3}}^{+}(b)=V_{3}$, then we have $V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{1}$. So abxyzua is a 6-cycle through $a b$ where $y \in V_{1}-\{a\}, z \in V_{2}-\{b\},\{x, u\} \in V_{3}$ and $x \neq u$. If $N_{V_{3}}^{+}(b) \neq V_{3}$, let $x \in N_{V_{3}}^{+}(b)$ be arbitrary. Then we have that $V_{2} \rightarrow x \rightarrow V_{1}$. By Lemma 2.2, there exists a vertex $y \in V_{1}-\{a\}$ and a vertex $z \in V_{2}$ such that $y \rightarrow z$. We can choose $z \neq b$ (otherwise, $V_{1} \rightarrow b$ and thus $b \rightarrow V_{3}$, which is a contradiction with $N_{V_{3}}^{+}(b) \neq V_{3}$). Since $\{a, y\} \rightarrow z$ and by Lemma 2.2, there is an arc $z u$ where $u \in V_{3}-\{x\}$ and abxyzua is a 6-cycle through $a b$.

Case $2 V_{3} \nrightarrow a \nrightarrow V_{2}$.
Obviously, the partite set V_{2} can be divided into two nonempty parts V_{2}^{+}, V_{2}^{-}such that $V_{2}^{-} \rightarrow a \rightarrow V_{2}^{+}$. Similarly, the partite set V_{3} can be divided into two nonempty parts V_{3}^{+}, V_{3}^{-}such that $V_{3}^{-} \rightarrow a \rightarrow V_{3}^{+}$. Let $V^{\prime}=V_{2}^{+} \cup V_{3}^{+}$and $V^{\prime \prime}=V_{2}^{-} \cup V_{3}^{-}$. Observe that $N^{+}(a)=V^{\prime}, N^{-}(a)=V^{\prime \prime}$ and $\left|V^{\prime}\right|=\left|V^{\prime \prime}\right|=r$. By Lemma 2.1, we also have $\left|V_{2}^{+}\right|=\left|V_{3}^{-}\right|$and $\left|V_{2}^{-}\right|=\left|V_{3}^{+}\right|$.

Claim 1 Let $y \in V_{1}$ be arbitrary. Then $d_{V^{\prime}}^{+}(y)=d_{V^{\prime \prime}}^{-}(y)$ and $d_{V^{\prime}}^{-}(y)=d_{V^{\prime \prime}}^{+}(y)$.
Proof By Lemma 2.1, we have $d_{V^{\prime}}^{+}(y)+d_{V^{\prime}}^{-}(y)=\left|V^{\prime}\right|=r, d_{V^{\prime \prime}}^{+}(y)+d_{V^{\prime \prime}}^{-}(y)=\left|V^{\prime \prime}\right|=r, d_{V^{\prime}}^{+}(y)+d_{V^{\prime \prime}}^{+}(y)=d^{+}(y)=r$ and $d_{V^{\prime}}^{-}(y)+d_{V^{\prime \prime}}^{-}(y)=d^{-}(y)=r$. So $d_{V^{\prime}}^{+}(y)=d_{V^{\prime \prime}}^{-}(y)$ and $d_{V^{\prime}}^{-}(y)=d_{V^{\prime \prime}}^{+}(y)$.

Subcase 2.1 $V_{3}^{+} \nrightarrow b$.
Since $V_{3}^{+} \nrightarrow b$, there is a vertex $x \in V_{3}^{+}$such that $b \rightarrow x$.
Subcase 2.1.1 $\left|V_{2}^{+}\right|=r-1$.
In this case, we have $\left|V_{2}^{+}\right|=\left|V_{3}^{-}\right|=r-1,\left|V_{2}^{-}\right|=\left|V_{3}^{+}\right|=1$ and $V_{3}^{+}=\{x\}$. If $V_{2}^{+} \rightarrow x$, then $N^{-}(x)=V_{2}^{+} \cup\{a\}$ and $x \rightarrow\left(V_{1}-\{a\}\right) \cup V_{2}^{-}$. Let $y \in V_{1}-\{a\}$ and $V_{2}^{-}=\{z\}$. If $y \rightarrow z$, Lemma 2.2 implies that there exists a vertex $u \in V_{3}^{-}$such that $z \rightarrow u$ and abxyzua is a 6-cycle through ab. By Lemma 2.2, if $z \rightarrow y$, then there is a vertex $v \in V_{3}^{-}$such that $y \rightarrow v$ and $a b x z y v a$ is a 6-cycle through $a b$.

https://daneshyari.com/en/article/4646791

Download Persian Version:

https://daneshyari.com/article/4646791

Daneshyari.com

[^0]: $\stackrel{\Delta}{4}$ This work is supported partially by the Natural Science Young Foundation of China (Nos. 11201273, 61202017, 61202365 and 11401354) and by the Shanxi Scholarship Council of China (No. 2013-017).

 * Corresponding author.

 E-mail address: guoqp@sxu.edu.cn (Q. Guo).
 http://dx.doi.org/10.1016/j.disc.2015.06.012
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

