Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Cycles through an arc in regular 3-partite tournaments*

Qiaoping Guo*, Linan Cui, Wei Meng

School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, China

ARTICLE INFO

ABSTRACT

Article history: Received 6 February 2015 Received in revised form 10 June 2015 Accepted 11 June 2015 Available online 30 July 2015

Keywords: Multipartite tournament Regular multipartite tournament 3-partite tournament Cycle A *c*-partite tournament is an orientation of a complete *c*-partite graph. In 2006, Volkmann conjectured that every arc of a regular 3-partite tournament *D* is contained in an *m*-, (m + 1)- or (m + 2)-cycle for each $m \in \{3, 4, ..., |V(D)| - 2\}$, and he also proved this conjecture for m = 3, 4, 5. In 2012, Xu et al. proved that every arc of a regular 3-partite tournament is contained in a 5- or 6-cycle, and in the same paper, the authors also posed the following conjecture:

Conjecture 1. If *D* is an *r*-regular 3-partite tournament with $r \ge 2$, then every arc of *D* is contained in a 3k- or (3k + 1)-cycle for k = 1, 2, ..., r - 1.

It is known that Conjecture 1 is true for k = 1. In this paper, we prove Conjecture 1 for k = 2, which implies that Volkmann's conjecture for m = 6 is correct.

© 2015 Elsevier B.V. All rights reserved.

1. Terminology and introduction

This paper will generally follow the notation and terminology defined in [1], and we assume that all digraphs are finite without loops or multiple arcs. Let *D* be a digraph. If *xy* is an arc of *D*, then we write $x \rightarrow y$ and say *x* dominates *y*. If *X* and *Y* are two disjoint vertex subsets of *D* such that every vertex of *X* dominates every vertex of *Y*, then we say that *X* dominates *Y*, denoted by $X \rightarrow Y$, otherwise denoted by $X \not\rightarrow Y$. If *D'* is a vertex set or a subdigraph of *D*, then we define $N_{D'}^+(x)$ as the set of vertices of *D'* which are dominated by *x* and $N_{D'}^-(x)$ as the set of vertices of *D'* which dominate *x*. The numbers $d_{D'}^+(x) = |N_{D'}^+(x)|$ and $d_{D'}^-(x) = |N_{D'}^-(x)|$ are called the *out-degree* and *in-degree* of *x* in *D'*, respectively.

A *c*-partite tournament is an orientation of a complete *c*-partite graph, and an *m*-cycle is a directed cycle of length *m*. A digraph *D* is regular, if $d^+(x) = d^-(x) = d^+(y) = d^-(y)$ for all $x, y \in V(D)$.

Multipartite tournaments have been got extensive attention since they were introduced by Moon in 1968. However, many statements on cycles in *c*-partite tournaments are only valid for $c \ge 4$. At present, the results on 3-partite tournaments are still very few.

For cycles through an arc in a regular 3-partite tournament, Volkmann [2] presented the following conjecture.

Conjecture 1.1 ([2]). If *D* is a regular 3-partite tournament, then every arc of *D* is contained in an *m*-, (m+1)- or (m+2)-cycle for each $m \in \{3, 4, ..., |V(D)| - 2\}$.

In the same paper, he proved this conjecture for m = 3, 4, 5. In 2012, Xu et al. generalized Volkmann's results and proved that every arc of a regular 3-partite tournament is contained in a 5- or 6-cycle, which also implies that the following Conjecture 1.2 is correct for k = 2.

* Corresponding author.

Note

CrossMark

^{*} This work is supported partially by the Natural Science Young Foundation of China (Nos. 11201273, 61202017, 61202365 and 11401354) and by the Shanxi Scholarship Council of China (No. 2013-017).

E-mail address: guoqp@sxu.edu.cn (Q. Guo).

http://dx.doi.org/10.1016/j.disc.2015.06.012 0012-365X/© 2015 Elsevier B.V. All rights reserved.

Conjecture 1.2 ([4]). If D is an r-regular 3-partite tournament with $r \ge 2$, then every arc of D is contained in a (3k - 1)- or 3k-cycle for k = 2, 3, ..., r.

In the same paper, Xu et al. also posed the following Conjecture 1.3.

Conjecture 1.3 ([4]). If D is an r-regular 3-partite tournament with $r \ge 2$, then every arc of D is contained in a 3k- or (3k + 1)-cycle for k = 1, 2, ..., r - 1.

Volkmann [2] proved that every arc of a regular 3-partite tournament *D* is contained in a 3- or 4-cycle, which implies that Conjecture 1.3 is true for k = 1. In this paper, we prove Conjecture 1.3 for k = 2 and Conjecture 1.1 for m = 6.

More information on cycles of 3-partite tournaments are contained in the paper by Volkmann [3].

2. Main result

The following two lemmas are important for the proof of main result.

Lemma 2.1 ([4]). If D is an r-regular 3-partite tournament with partite sets V_1 , V_2 , V_3 and v is a vertex of D, then $|V_1| = |V_2| = |V_3| = r$ and $d^+(v) = d^-(v) = r$.

Lemma 2.2 ([4]). If *D* is an *r*-regular 3-partite tournament with partite sets *U*, *V*, *W* and *u* is a vertex of *U*, then $d_V^+(u) = d_W^-(u)$ and $d_V^-(u) = d_W^+(u)$.

Theorem 2.1. If D is an r-regular 3-partite tournament with $r \ge 3$, then every arc of D is contained in a 6- or 7-cycle.

Proof. Let V_1 , V_2 , V_3 be the partite sets of *D*, and let *ab* be an arbitrary arc of *D*. Without loss of generality, we suppose that $a \in V_1$ and $b \in V_2$. We distinguish the following two cases.

Case 1 $V_3 \rightarrow a \rightarrow V_2$.

By Lemma 2.2, we have $d_{V_3}^+(x) \ge 1$ and $d_{V_2}^-(y) \ge 1$ for any $x \in V_2$, $y \in V_3$. So there are at least r arcs from V_2 to V_3 . If there are exactly r arcs from V_2 to V_3 , we array the vertices of V_2 into b_1, b_2, \ldots, b_r with $b_1 = b$ and the vertices of V_3 into c_1, c_2, \ldots, c_r such that $b_i \to c_i$ and $V_3 - \{c_i\} \to b_i$, $i = 1, 2, \ldots, r$. Obviously, $abc_1b_2c_2b_3c_3a$ is a 7-cycle through ab. Therefore, we assume that there are more than r arcs from V_2 to V_3 .

If $V_2 \rightarrow N_{V_3}^+(b)$, then there exists a vertex $x \in N_{V_3}^+(b)$ and a vertex $y \in V_2$ such that $x \rightarrow y$. By Lemma 2.2, there is an arc yz where $z \in V_1 - \{a\}$. When $V_3 - \{x\} \rightarrow z$, there is a vertex u in $V_3 - \{x\}$ such that $z \rightarrow u$. So *abxyzua* is a 6-cycle through *ab*. When $V_3 - \{x\} \rightarrow z$, we have $z \rightarrow V_2 - \{y\}$ (otherwise $|N^-(z)| > r$, a contradiction). Let $u \in V_2 - \{b, y\}$ be arbitrary. Since $\{a, z\} \rightarrow u$ and by Lemma 2.2, there is an arc uv where $v \in V_3 - \{x\}$ and *abxyzuva* is a 7-cycle through *ab*.

We assume that $V_2 \rightarrow N_{V_3}^+(b)$. If $N_{V_3}^+(b) = V_3$, then we have $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_1$. So *abxyzua* is a 6-cycle through *ab* where $y \in V_1 - \{a\}, z \in V_2 - \{b\}, \{x, u\} \in V_3$ and $x \neq u$. If $N_{V_3}^+(b) \neq V_3$, let $x \in N_{V_3}^+(b)$ be arbitrary. Then we have that $V_2 \rightarrow x \rightarrow V_1$. By Lemma 2.2, there exists a vertex $y \in V_1 - \{a\}$ and a vertex $z \in V_2$ such that $y \rightarrow z$. We can choose $z \neq b$ (otherwise, $V_1 \rightarrow b$ and thus $b \rightarrow V_3$, which is a contradiction with $N_{V_3}^+(b) \neq V_3$). Since $\{a, y\} \rightarrow z$ and by Lemma 2.2, there is an arc *zu* where $u \in V_3 - \{x\}$ and *abxyzua* is a 6-cycle through *ab*.

Case 2 $V_3 \nrightarrow a \nrightarrow V_2$.

Obviously, the partite set V_2 can be divided into two nonempty parts V_2^+ , V_2^- such that $V_2^- \rightarrow a \rightarrow V_2^+$. Similarly, the partite set V_3 can be divided into two nonempty parts V_3^+ , V_3^- such that $V_3^- \rightarrow a \rightarrow V_3^+$. Let $V' = V_2^+ \cup V_3^+$ and $V'' = V_2^- \cup V_3^-$. Observe that $N^+(a) = V'$, $N^-(a) = V''$ and |V'| = |V''| = r. By Lemma 2.1, we also have $|V_2^+| = |V_3^-|$ and $|V_2^-| = |V_3^+|$.

Claim 1 Let $y \in V_1$ be arbitrary. Then $d_{V'}^+(y) = d_{V''}^-(y)$ and $d_{V'}^-(y) = d_{V''}^+(y)$.

Proof By Lemma 2.1, we have $d_{V'}^+(y) + d_{V'}^-(y) = |V'| = r$, $d_{V''}^+(y) + d_{V''}^-(y) = |V''| = r$, $d_{V'}^+(y) + d_{V''}^+(y) = d^+(y) = r$ and $d_{V'}^-(y) = d_{V''}^-(y) = d^-(y) = r$. So $d_{V'}^+(y) = d_{V''}^-(y)$ and $d_{V'}^-(y) = d_{V''}^+(y)$. \Box

Subcase 2.1 $V_3^+ \rightarrow b$.

Since $V_3^+ \nrightarrow b$, there is a vertex $x \in V_3^+$ such that $b \to x$.

Subcase 2.1.1 $|V_2^+| = r - 1$.

In this case, we have $|V_2^+| = |V_3^-| = r - 1$, $|V_2^-| = |V_3^+| = 1$ and $V_3^+ = \{x\}$. If $V_2^+ \to x$, then $N^-(x) = V_2^+ \cup \{a\}$ and $x \to (V_1 - \{a\}) \cup V_2^-$. Let $y \in V_1 - \{a\}$ and $V_2^- = \{z\}$. If $y \to z$, Lemma 2.2 implies that there exists a vertex $u \in V_3^-$ such that $z \to u$ and *abxyzua* is a 6-cycle through *ab*. By Lemma 2.2, if $z \to y$, then there is a vertex $v \in V_3^-$ such that $y \to v$ and *abxyzua* is a 6-cycle through *ab*.

Download English Version:

https://daneshyari.com/en/article/4646791

Download Persian Version:

https://daneshyari.com/article/4646791

Daneshyari.com