ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Bounds and constructions for optimal $(n, \{3, 5\}, \Lambda_a, 1, Q)$ -OOCs

Wei Li^a, Huangsheng Yu^a, Dianhua Wu^{b,*,1}

- ^a Department of Mathematics, Guangxi Normal University, Guilin 541004, PR China
- ^b Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, PR China

ARTICLE INFO

Article history: Received 27 November 2014 Received in revised form 15 July 2015 Accepted 19 July 2015 Available online 5 August 2015

Keywords:
Cyclic packing
Optimal
Regular
Skew starter
Variable-weight optical orthogonal codes

ABSTRACT

Let $W=\{w_1,w_2,\ldots,w_r\}$ be an ordering of a set of r integers greater than 1, $\Lambda_a=(\lambda_a^{(1)},\lambda_a^{(2)},\ldots,\lambda_a^{(r)})$ be an r-tuple of positive integers, λ_c be a positive integer, and $Q=(q_1,q_2,\ldots,q_r)$ be an r-tuple of positive rational numbers whose sum is 1. In 1996, Yang introduced variable-weight optical orthogonal code $((n,W,\Lambda_a,\lambda_c,Q)$ -OOC) for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. Some work had been done on the constructions of optimal $(n,\{3,4\},\Lambda_a,1,Q)$ -OOCs with unequal auto- and cross-correlation constraints. In this paper, we focus our main attention on $(n,\{3,5\},\Lambda_a,1,Q)$ -OOCs, where $\Lambda_a\in\{(1,2),(2,1),(2,2)\}$. Tight upper bounds on the maximum code size of an $(n,\{3,5\},\Lambda_a,1,Q)$ -OOC are obtained, and infinite classes of optimal balanced $(n,\{3,5\},\Lambda_a,1)$ -OOCs are constructed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $n, k, \lambda_a, \lambda_c$ be positive integers. Optical orthogonal codes, $(n, k, \lambda_a, \lambda_c)$ -OOCs, were introduced by Salehi, as signature sequences to facilitate multiple access in optical fiber networks [23,24]. They have important applications [16]. Many existing works on OOCs have assumed that $\lambda_a = \lambda_c = 1$, i.e. (n, k, 1)-OOCs, see [1,4,11,14,18,19,28] for some of the examples. Recently, (n, k, 2, 1)-OOCs had been deeply investigated for $3 \le k \le 5$ [3,8,12,22,25].

To meet multiple QoS requirements, Yang introduced multimedia optical CDMA communication system employing variable-weight OOCs in 1996 [27]. In the system, codes with different weights will have different bit error rates (BER). The codewords of low code weight can be assigned to the low-QoS applications and high code weight codewords can be assigned to high-QoS requirement applications. Hence, the multi-weight property of the OOCs enables the system to meet multiple QoS requirements. Similar to [22], throughout this paper, let $\binom{Z_n}{k}$ be the set of all k-subsets of Z_n , the residue ring of integers modulo n. The following definition of a variable-weight OOC is from [20].

Let $W = \{w_1, \dots, w_r\}$ be an ordering of a set of r integers greater than 1, $\Lambda_a = (\lambda_a^{(1)}, \dots, \lambda_a^{(r)})$ an r-tuple (auto-correlation sequence) of positive integers, λ_c a positive integer (cross-correlation parameter), and $Q = (q_1, \dots, q_r)$ an r-tuple (weight distribution sequence) of positive rational numbers whose sum is 1.

Definition 1. An $(n, W, \Lambda_a, \lambda_c, Q)$ -OOC is a set \mathscr{C} of subsets (*codeword-sets*) of Z_n with sizes (*weights*) from W satisfying the following properties:

^{*} Corresponding author.

E-mail address: dhwu@gxnu.edu.cn (D. Wu).

¹ Also with Department of Mathematics, Guangxi Normal University, Guilin 541004, PR China.

weight distribution property: the ratio of codeword-sets of \mathscr{C} of weight w_i is q_i :

$$\left|\mathscr{C} \cap \begin{pmatrix} Z_n \\ w_i \end{pmatrix}\right| = q_i |\mathscr{C}| \quad \text{for } 1 \leq i \leq r;$$

auto-correlation property: any two distinct translates of a codeword-set of weight w_i share at most $\lambda_a^{(i)}$ elements:

$$|C \cap (C+t)| \le \lambda_a^{(i)} \quad \forall C \in \mathscr{C} \cap \begin{pmatrix} Z_n \\ w_i \end{pmatrix}, \ \forall t \in Z_n \setminus \{0\}; \tag{1}$$

cross-correlation property: any two translates of two distinct codeword-sets share at most λ_c elements:

$$|C \cap (C'+t)| \le \lambda_c \quad \forall \{C,C'\} \in \binom{\mathscr{C}}{2}, \ \forall \ t \in Z_n.$$
 (2)

If $\lambda_a^{(i)} = \lambda_a$ for every i, one simply says that $\mathscr C$ is an $(n,W,\lambda_a,\lambda_c,Q)$ -OOC. Also, speaking of an $(n,W,\lambda_a,\lambda_c,Q)$ -OOC one means an $(n,W,\lambda_a,\lambda_c,Q)$ -OOC where $\lambda_a = \lambda_c = \lambda$. We say that Q is normalized if it is written in the form $Q = (\frac{a_1}{b},\dots,\frac{a_r}{b})$ with $\gcd(a_1,\dots,a_r) = 1$. Speaking of a balanced $(n,W,\Lambda_a,\lambda_c)$ -OOC we mean an $(n,W,\Lambda_a,\lambda_c,Q)$ -OOC with $Q = (\frac{1}{r},\frac{1}{r},\dots,\frac{1}{r})$, namely an OOC in which the number of codeword-sets of a given weight is a constant. The term variable-weight optical orthogonal code, or variable-weight OOC, is also used if there is no need to list the parameters. The code $\mathscr C$ is said to be optimal if its size reaches a suitable upper bound deduced from general theoretical considerations.

Example 1. A $(33, \{3, 5\}, (1, 1), 1, (2/3, 1/3))$ -OOC \mathcal{C}_1 .

$$\mathcal{C}_1 = \{\{0, 5, 18\}, \{0, 8, 19\}, \{0, 1, 3, 7, 24\}\}.$$

Some work had been done on the existences of (n, W, 1, Q)-OOCs. The interested reader may refer to [13,26,27] and the references therein. Some results on the code size of an $(n, \{3, 4\}, \Lambda_a, 1, Q)$ -OOC and the constructions of optimal $(n, \{3, 4\}, \Lambda_a, 1, Q)$ -OOCs are presented in [20,29]. In this paper, the upper bounds on the code size of $(n, \{3, 5\}, \Lambda_a, 1, Q)$ -OOCs are obtained for $\Lambda_a \in \{(1, 2), (2, 1), (2, 2)\}$, and infinite classes of optimal balanced $(n, \{3, 5\}, \Lambda_a, 1)$ -OOCs are constructed.

2. Preliminaries

We will use the terminology in [22] and [8]. For a given subset C of Z_n , let us denote by ΔC its list of differences, which is the multiset of all differences x-y with (x,y) an ordered pair of distinct elements of C. The underlying set of ΔC , i.e. the set of all distinct differences appearing in ΔC , will be called the *support* of ΔC and we denote it by $supp(\Delta C)$. More generally, the list of differences of a set C of subsets of C is the multiset $\Delta C = \bigcup_{C \in C} \Delta C$. Also, the support of ΔC is the underlying set of $\bigcup_{C \in C} \Delta C$. Saying that C is difference-disjoint we mean that the lists of differences of every two distinct members of C are disjoint. Define C is C and C in C are C in C and C in C in

Lemma 2.1. Every $(n, W, \Lambda_a, 1, Q)$ -OOC can be viewed as a family \mathscr{C} of subsets of Z_n satisfying the following conditions:

- (i) The ratio of codeword-sets of weight w_i is q_i , $1 \le i \le r$;
- (ii) For every $C \in \mathscr{C}$ with weight w_i , we have $\lambda(C) \leq \lambda_a^{(i)}$;
- (iii) & is difference-disjoint.

The difference leave of an $(n, W, \Lambda_a, 1, Q)$ -OOC \mathscr{C} , denoted by DL(\mathscr{C}), is the set of all elements of Z_n which are not covered by $\Delta\mathscr{C}$. We say that \mathscr{C} is m-regular if DL(\mathscr{C}) is the subgroup of Z_n of order m.

Lemma 2.2 ([20,22]). For $C \in \binom{Z_n}{3}$,

$$|supp(\Delta C)| = \begin{cases} 2 & \text{if } C = \left(\frac{n}{3}\right) Z_n; \\ 3 & \text{if } C \subset \left(\frac{n}{4}\right) Z_n; \\ 4 & \text{if } C = \{0, a, 2a\} \text{ and } a \not\in \{0, \pm n/3, \pm n/4\}; \\ 5 & \text{if } C = \{0, a, n/2\} \text{ and } a \not\in \{0, \pm n/4\}, \end{cases}$$

$$\lambda(C) = \begin{cases} 3 & \text{if } |supp(\Delta C)| = 2; \\ 2 & \text{if } |supp(\Delta C)| = 3, 4, \text{ or } 5; \\ 1 & \text{if } |supp(\Delta C)| = 6, \end{cases}$$

and

Download English Version:

https://daneshyari.com/en/article/4646792

Download Persian Version:

https://daneshyari.com/article/4646792

Daneshyari.com