An improved upper bound on the linear 2-arboricity of planar graphs

CrossMark

Yiqiao Wang

School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

ARTICLE INFO

Article history:

Received 20 August 2014
Received in revised form 7 July 2015
Accepted 14 July 2015
Available online 6 August 2015

Keywords:

Planar graph
Linear 2-arboricity
Maximum degree

Abstract

The linear 2-arboricity $\operatorname{la}_{2}(G)$ of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2 . In this paper, we prove that if G is a planar graph, then $\operatorname{la}_{2}(G) \leq\lceil(\Delta(G)+1) / 2\rceil+6$. This improves a result in Lih et al. (2003), which says that every planar graph G satisfies $\mathrm{la}_{2}(G) \leq\lceil(\Delta(G)+1) / 2\rceil+12$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite simple graphs. For a graph G, we use $V(G), E(G), \Delta(G)$, and $\delta(G)$, to denote, respectively, its vertex set, edge set, maximum degree, and minimum degree. An edge-partition of a graph G is a decomposition of G into subgraphs $G_{1}, G_{2}, \ldots, G_{m}$ such that $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \cdots \cup E\left(G_{m}\right)$ and $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$ for $i \neq j$. A linear k-forest is a graph whose components are paths of length at most k. The linear k-arboricity of G, denoted by $\operatorname{la}_{k}(G)$, is the least integer m such that G can be edge-partitioned into m linear k-forests. Clearly, $\operatorname{la}_{k}(G) \geq \mathrm{la}_{k+1}(G)$ for any $k \geq 1$. For extremities, $\mathrm{la}_{1}(G)$ is the chromatic index $\chi^{\prime}(G)$ of G; la $\infty(G)$ corresponds to the linear arboricity la (G) of G.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [9]. For any graph G on n vertices, they put forward the following conjecture:

$$
\operatorname{la}_{k}(G) \leq \begin{cases}\left\lceil\frac{n \Delta(G)+1}{2\left\lfloor\frac{k n}{k+1}\right\rfloor}\right\rceil & \text { if } \Delta(G) \neq n-1 \\ \left\lceil\frac{n \Delta(G)}{2\left\lfloor\frac{k n}{k+1}\right\rfloor}\right\rceil & \text { if } \Delta(G)=n-1\end{cases}
$$

This notion was further studied by Bermond et al. [2], Jackson and Wormald [10], Aldred and Wormald [1], Chen and Huang [6], Chang et al. [5], and Thomassen [15]. Moreover, Chang [4] discussed the algorithmic aspects of the linear k-arboricity.

In recent years, a number of interesting results about the linear 2-arboricity of graphs have been obtained. First, we note that when $k=2$, Conjecture 1 is written as follows:

$$
\operatorname{la}_{2}(G) \leq \begin{cases}\left\lceil\frac{n \Delta(G)+1}{2\left\lfloor\frac{2 n}{3}\right\rfloor}\right\rceil & \text { if } \Delta(G) \neq n-1 \\ \left\lceil\frac{n \Delta(G)}{2\left\lfloor\frac{2 n}{3}\right\rfloor}\right\rceil & \text { if } \Delta(G)=n-1\end{cases}
$$

[^0]In [7,8], the linear 2-arboricities of some special graphs such as cycles, trees, complete graphs, and complete bipartite graphs were determined. Suppose that G is a planar graph with the girth g. Set $\eta(G)=\lceil(\Delta(G)+1) / 2\rceil$. Lih, Tong and Wang [11] proved that (a) $\operatorname{la}_{2}(G) \leq \eta(G)+12$; (b) $\operatorname{la}_{2}(G) \leq \eta(G)+6$ if $g \geq 4$; (c) $\operatorname{la}_{2}(G) \leq \eta(G)+2$ if $g \geq 5$; (d) $\operatorname{la}_{2}(G) \leq \eta(G)+1$ if $g \geq 7$. Qian and Wang [14] proved that $\mathrm{la}_{2}(G) \leq \eta(G)+3$ if G contains no 4-cycles. Ma et al. [13] proved that $\operatorname{la}_{2}(G) \leq \eta(G)+6$ if G contains no 5 -cycles or 6 -cycles. For an outerplanar graph G, Lih et al. [12] proved that $\mathrm{la}_{2}(G) \leq \eta(G)+1$ and this upper bound is tight.

In this paper, we show that for any planar graph $G, \operatorname{la}_{2}(G) \leq \eta(G)+6$, which improves a result in [11].
To obtain our main result, we need to introduce some notions. A plane graph is a particular drawing of a planar graph on the Euclidean plane. For a plane graph G, let $F(G)$ denote the face set of G. For $f \in F(G)$, we use $b(f)$ to denote the closed boundary walk of f and write $f=\left[u_{1} u_{2} \cdots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices on the boundary walk in the clockwise order, with repeated occurrences of vertices allowed. A vertex of degree k (at most k, at least k) is called a k-vertex (k^{-}-vertex, k^{+}vertex). Similarly, we can define k-face, k^{-}-face, and k^{+}-face.

2. Edge-partition

In this section, we establish an edge-partition theorem on planar graphs, which will play an important role in the proof of our main result. We first give the following useful fact:

Lemma 1 ([3]). Every planar graph G with $\delta(G) \geq 2$ contains one of the following configurations:
(1) An edge $x y$ such that $d_{G}(x)+d_{G}(y) \leq 15$;
(2) A cycle $v_{0} v_{1} \cdots v_{2 s-1} v_{0}$ such that $d_{G}\left(v_{0}\right)=d_{G}\left(v_{2}\right)=\cdots=d_{G}\left(v_{2 s-2}\right)=2$.

Theorem 2. Every planar graph G has an edge-partition into two forests F_{1}, F_{2} and a subgraph H such that, for every $v \in V(G)$, $d_{H}(v) \leq 11$ and $d_{F_{i}}(v) \leq \max \left\{2,\left\lceil\frac{d_{G}(v)-11}{2}\right\rceil\right\}$ for $i=1,2$.
Proof. We prove the theorem by induction on the edge number $|E(G)|$. If $|E(G)| \leq 11$, then the result holds trivially. Let G be a planar graph with $|E(G)| \geq 12$. If $\Delta(G) \leq 11$, it suffices to take $H=G$ and $F_{1}=F_{2}=\emptyset$. Assume that $\Delta(G) \geq 12$. If G^{\prime} is a proper spanning subgraph of G, then G^{\prime} has an edge-partition into two forests $F_{1}^{\prime}, F_{2}^{\prime}$ and a subgraph H^{\prime} such that, for every $t \in V\left(G^{\prime}\right), d_{H^{\prime}}(t) \leq 11$ and $d_{F_{i}^{\prime}}(t) \leq \max \left\{2,\left\lceil\frac{d_{G^{\prime}}(t)-11}{2}\right\rceil\right\}$ for $i=1,2$, by the induction hypothesis. We are going to choose appropriate subgraphs G^{\prime} so that we can extend $F_{1}^{\prime} \cup F_{2}^{\prime} \cup H^{\prime}$ to an edge-partition $F_{1} \cup F_{2} \cup H$ of G satisfying the theorem.

In the following, for any vertex t, we simply write:

$$
\beta(t)=\max \left\{2,\left\lceil\frac{d_{G}(t)-11}{2}\right\rceil\right\},
$$

and

$$
\beta^{\prime}(t)=\max \left\{2,\left\lceil\frac{d_{G^{\prime}}(t)-11}{2}\right\rceil\right\} .
$$

Since G^{\prime} is a spanning subgraph of G, for any $t \in V\left(G^{\prime}\right)=V(G), d_{G^{\prime}}(t) \leq d_{G}(t)$, and hence $\beta^{\prime}(t) \leq \beta(t)$.
If $\delta(G)=1$, let $u v \in E(G)$ with $d_{G}(u)=1$. Consider the graph $G^{\prime}=G-u v$. By the induction hypothesis, G^{\prime} admits an edge-partition into two forests $F_{1}^{\prime}, F_{2}^{\prime}$ and a subgraph H^{\prime} such that, for every $t \in V\left(G^{\prime}\right), d_{H^{\prime}}(t) \leq 11$ and $d_{F_{i}^{\prime}}(t) \leq \beta^{\prime}(t)$ for $i=1$, 2 .

If $d_{H^{\prime}}(v) \leq 10$, then we define $H=H^{\prime}+u v$ and $F_{i}=F_{i}^{\prime}$ for $i=1$, 2. It is easy to inspect that $F_{1} \cup F_{2} \cup H$ is an edge-partition of G satisfying the theorem. Otherwise, $d_{H^{\prime}}(v)=11$. We suppose that $d_{F_{1}^{\prime}}(v) \leq d_{F_{2}^{\prime}}(v)$. Since $d_{G^{\prime}}(v)=$ $d_{F_{1}^{\prime}}(v)+d_{F_{2}^{\prime}}(v)+d_{H^{\prime}}(v)=d_{F_{1}^{\prime}}(v)+d_{F_{2}^{\prime}}(v)+11$ and $d_{G^{\prime}}(v)=d_{G}(v)-1$, we have $d_{F_{1}^{\prime}}(v) \leq\left\lfloor\left(d_{G}(v)-12\right) / 2\right\rfloor$. Let $F_{1}=F_{1}^{\prime}+u v$, $F_{2}=F_{2}^{\prime}$, and $H=H^{\prime}$. Thus, $d_{F_{2}}(t)=d_{F_{2}^{\prime}}(t)$ and $d_{H}(t)=d_{H^{\prime}}(t)$ for all $t \in V(G)$. Moreover, $d_{F_{1}}(u)=1<2=\beta(u)$, $d_{F_{1}}(v)=1+d_{F_{1}^{\prime}}(v) \leq 1+\left\lfloor\left(d_{G}(v)-12\right) / 2\right\rfloor=\left\lceil\left(d_{G}(v)-11\right) / 2\right\rceil \leq \beta(v)$, and $d_{F_{1}}(t)=d_{F_{1}^{\prime}}(t) \leq \beta^{\prime}(t) \leq \beta(t)$ for all $t \in V(G) \backslash\{u, v\}$.

If $\delta(G) \geq 2$, by Lemma 1 , we consider two cases as follows.
Case 1. There is an edge $x y \in E(G)$ such that $d_{G}(x)+d_{G}(y) \leq 15$.
Let $G^{\prime}=G-x y$. By the induction hypothesis, G^{\prime} admits an edge-partition into two forests $F_{1}^{\prime}, F_{2}^{\prime}$ and a subgraph H^{\prime} such that, for every $t \in V\left(G^{\prime}\right), d_{H^{\prime}}(t) \leq 11$ and $d_{F_{i}^{\prime}}(t) \leq \beta^{\prime}(t)$ for $i=1$, Without loss of generality, assume that $d_{H^{\prime}}(x) \leq d_{H^{\prime}}(y)$. If $d_{H^{\prime}}(y) \leq 10$, let $H=H^{\prime}+x y, F_{1}=F_{1}^{\prime}$, and $F_{2}=F_{2}^{\prime}$. It is easy to verify that $F_{1} \cup F_{2} \cup H$ is an edge-partition of G satisfying the theorem.

Assume that $d_{H^{\prime}}(y)=11$. Since $\delta(G) \geq 2$ and $d_{G}(x)+d_{G}(y) \leq 15$, it is immediate to derive that $d_{G^{\prime}}(x)+d_{G^{\prime}}(y) \leq 13$. Thus, $1 \leq d_{G^{\prime}}(x) \leq 2$ and $d_{F_{1}^{\prime}}(y)+d_{F_{2}^{\prime}}(y)+d_{G^{\prime}}(x) \leq 2$. This further implies that $d_{F_{1}^{\prime}}(y)+d_{F_{2}^{\prime}}(y) \leq 1$. Without loss of generality, we suppose that $d_{F_{1}^{\prime}}(x) \leq d_{F_{2}^{\prime}}(x)$. Thus, $d_{F_{1}^{\prime}}(x) \leq 1$. Let $F_{1}=F_{1}^{\prime}+x y, F_{2}=F_{2}^{\prime}$, and $H=H^{\prime}$. It is easy to see that $d_{F_{1}}(x)=d_{F_{1}^{\prime}}(x)+1 \leq 1+1=2 \leq \beta(x), d_{F_{1}}(y)=d_{F_{1}^{\prime}}(y)+1 \leq 1+1=2 \leq \beta(y), d_{F_{2}}(x)=d_{F_{2}^{\prime}}(x), d_{F_{2}}(y)=d_{F_{2}^{\prime}}(y)$, $d_{H}(x)=d_{H^{\prime}}(x) \leq 2$, and $d_{H}(y)=d_{H^{\prime}}(y)=11$.

https://daneshyari.com/en/article/4646794

Download Persian Version:

https://daneshyari.com/article/4646794

Daneshyari.com

[^0]: E-mail address: yqwang@bucm.edu.cn.
 http://dx.doi.org/10.1016/j.disc.2015.07.003
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

