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a b s t r a c t

The linear 2-arboricity la2(G) of a graphG is the least integer k such thatG can be partitioned
into k edge-disjoint forests, whose component trees are paths of length at most 2. In
this paper, we prove that if G is a planar graph, then la2(G) ≤ ⌈(∆(G) + 1)/2⌉ + 6.
This improves a result in Lih et al. (2003), which says that every planar graph G satisfies
la2(G) ≤ ⌈(∆(G) + 1)/2⌉ + 12.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite simple graphs. For a graph G, we use V (G), E(G), ∆(G), and δ(G), to
denote, respectively, its vertex set, edge set, maximum degree, and minimum degree. An edge-partition of a graph G is a
decomposition of G into subgraphs G1,G2, . . . ,Gm such that E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gm) and E(Gi) ∩ E(Gj) = ∅ for
i ≠ j. A linear k-forest is a graph whose components are paths of length at most k. The linear k-arboricity of G, denoted by
lak(G), is the least integer m such that G can be edge-partitioned into m linear k-forests. Clearly, lak(G) ≥ lak+1(G) for any
k ≥ 1. For extremities, la1(G) is the chromatic index χ ′(G) of G; la∞(G) corresponds to the linear arboricity la(G) of G.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [9]. For any graph G on n vertices, they put
forward the following conjecture:

lak(G) ≤


n∆(G) + 1

2⌊ kn
k+1⌋


if ∆(G) ≠ n − 1; n∆(G)

2⌊ kn
k+1⌋


if ∆(G) = n − 1.

This notionwas further studied by Bermond et al. [2], Jackson andWormald [10], Aldred andWormald [1], Chen and Huang
[6], Chang et al. [5], and Thomassen [15]. Moreover, Chang [4] discussed the algorithmic aspects of the linear k-arboricity.

In recent years, a number of interesting results about the linear 2-arboricity of graphs have been obtained. First, we note
that when k = 2, Conjecture 1 is written as follows:

la2(G) ≤


n∆(G) + 1

2⌊ 2n
3 ⌋


if ∆(G) ≠ n − 1;n∆(G)

2⌊ 2n
3 ⌋


if ∆(G) = n − 1.
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In [7,8], the linear 2-arboricities of some special graphs such as cycles, trees, complete graphs, and complete bipartite
graphs were determined. Suppose that G is a planar graph with the girth g . Set η(G) = ⌈(∆(G) + 1)/2⌉. Lih, Tong and
Wang [11] proved that (a) la2(G) ≤ η(G) + 12; (b) la2(G) ≤ η(G) + 6 if g ≥ 4; (c) la2(G) ≤ η(G) + 2 if g ≥ 5; (d)
la2(G) ≤ η(G) + 1 if g ≥ 7. Qian and Wang [14] proved that la2(G) ≤ η(G) + 3 if G contains no 4-cycles. Ma et al. [13]
proved that la2(G) ≤ η(G) + 6 if G contains no 5-cycles or 6-cycles. For an outerplanar graph G, Lih et al. [12] proved that
la2(G) ≤ η(G) + 1 and this upper bound is tight.

In this paper, we show that for any planar graph G, la2(G) ≤ η(G) + 6, which improves a result in [11].
To obtain our main result, we need to introduce some notions. A plane graph is a particular drawing of a planar graph on

the Euclidean plane. For a plane graph G, let F(G) denote the face set of G. For f ∈ F(G), we use b(f ) to denote the closed
boundarywalk of f andwrite f = [u1u2 · · · un] if u1, u2, . . . , un are the vertices on the boundarywalk in the clockwise order,
with repeated occurrences of vertices allowed. A vertex of degree k (at most k, at least k) is called a k-vertex (k−-vertex, k+-
vertex). Similarly, we can define k-face, k−-face, and k+-face.

2. Edge-partition

In this section, we establish an edge-partition theorem on planar graphs, which will play an important role in the proof
of our main result. We first give the following useful fact:

Lemma 1 ([3]). Every planar graph G with δ(G) ≥ 2 contains one of the following configurations:
(1) An edge xy such that dG(x) + dG(y) ≤ 15;
(2) A cycle v0v1 · · · v2s−1v0 such that dG(v0) = dG(v2) = · · · = dG(v2s−2) = 2.

Theorem 2. Every planar graph G has an edge-partition into two forests F1, F2 and a subgraph H such that, for every v ∈ V (G),
dH(v) ≤ 11 and dFi(v) ≤ max{2, ⌈ dG(v)−11

2 ⌉} for i = 1, 2.

Proof. We prove the theorem by induction on the edge number |E(G)|. If |E(G)| ≤ 11, then the result holds trivially. Let G
be a planar graph with |E(G)| ≥ 12. If ∆(G) ≤ 11, it suffices to take H = G and F1 = F2 = ∅. Assume that ∆(G) ≥ 12. If G′ is
a proper spanning subgraph of G, then G′ has an edge-partition into two forests F ′

1, F
′

2 and a subgraph H ′ such that, for every
t ∈ V (G′), dH ′(t) ≤ 11 and dF ′

i
(t) ≤ max{2, ⌈ dG′ (t)−11

2 ⌉} for i = 1, 2, by the induction hypothesis. We are going to choose
appropriate subgraphs G′ so that we can extend F ′

1 ∪ F ′

2 ∪ H ′ to an edge-partition F1 ∪ F2 ∪ H of G satisfying the theorem.
In the following, for any vertex t , we simply write:

β(t) = max

2,

dG(t) − 11
2


,

and

β ′(t) = max

2,

dG′(t) − 11
2


.

Since G′ is a spanning subgraph of G, for any t ∈ V (G′) = V (G), dG′(t) ≤ dG(t), and hence β ′(t) ≤ β(t).
If δ(G) = 1, let uv ∈ E(G) with dG(u) = 1. Consider the graph G′

= G − uv. By the induction hypothesis, G′ admits an
edge-partition into two forests F ′

1, F
′

2 and a subgraph H ′ such that, for every t ∈ V (G′), dH ′(t) ≤ 11 and dF ′
i
(t) ≤ β ′(t) for

i = 1, 2.
If dH ′(v) ≤ 10, then we define H = H ′

+ uv and Fi = F ′

i for i = 1, 2. It is easy to inspect that F1 ∪ F2 ∪ H is an
edge-partition of G satisfying the theorem. Otherwise, dH ′(v) = 11. We suppose that dF ′

1
(v) ≤ dF ′

2
(v). Since dG′(v) =

dF ′
1
(v)+dF ′

2
(v)+dH ′(v) = dF ′

1
(v)+dF ′

2
(v)+11 and dG′(v) = dG(v)−1, we have dF ′

1
(v) ≤ ⌊(dG(v)−12)/2⌋. Let F1 = F ′

1+uv,
F2 = F ′

2, and H = H ′. Thus, dF2(t) = dF ′
2
(t) and dH(t) = dH ′(t) for all t ∈ V (G). Moreover, dF1(u) = 1 < 2 = β(u),

dF1(v) = 1 + dF ′
1
(v) ≤ 1 + ⌊(dG(v) − 12)/2⌋ = ⌈(dG(v) − 11)/2⌉ ≤ β(v), and dF1(t) = dF ′

1
(t) ≤ β ′(t) ≤ β(t) for all

t ∈ V (G) \ {u, v}.
If δ(G) ≥ 2, by Lemma 1, we consider two cases as follows.

Case 1. There is an edge xy ∈ E(G) such that dG(x) + dG(y) ≤ 15.
Let G′

= G − xy. By the induction hypothesis, G′ admits an edge-partition into two forests F ′

1, F
′

2 and a subgraph H ′ such
that, for every t ∈ V (G′), dH ′(t) ≤ 11 and dF ′

i
(t) ≤ β ′(t) for i = 1, 2.Without loss of generality, assume that dH ′(x) ≤ dH ′(y).

If dH ′(y) ≤ 10, let H = H ′
+ xy, F1 = F ′

1, and F2 = F ′

2. It is easy to verify that F1 ∪ F2 ∪ H is an edge-partition of G satisfying
the theorem.

Assume that dH ′(y) = 11. Since δ(G) ≥ 2 and dG(x) + dG(y) ≤ 15, it is immediate to derive that dG′(x) + dG′(y) ≤ 13.
Thus, 1 ≤ dG′(x) ≤ 2 and dF ′

1
(y) + dF ′

2
(y) + dG′(x) ≤ 2. This further implies that dF ′

1
(y) + dF ′

2
(y) ≤ 1. Without loss of

generality, we suppose that dF ′
1
(x) ≤ dF ′

2
(x). Thus, dF ′

1
(x) ≤ 1. Let F1 = F ′

1 + xy, F2 = F ′

2, and H = H ′. It is easy to see that
dF1(x) = dF ′

1
(x) + 1 ≤ 1 + 1 = 2 ≤ β(x), dF1(y) = dF ′

1
(y) + 1 ≤ 1 + 1 = 2 ≤ β(y), dF2(x) = dF ′

2
(x), dF2(y) = dF ′

2
(y),

dH(x) = dH ′(x) ≤ 2, and dH(y) = dH ′(y) = 11.
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