Monochromatic bounded degree subgraph partitions

Andrey Grinshpun ${ }^{\text {a }}$, Gábor N. Sárközy ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
${ }^{\mathrm{b}}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O. Box 127, Budapest, H-1364, Hungary
${ }^{\text {c Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA }}$

ARTICLE INFO

Article history:

Received 29 May 2014
Received in revised form 20 April 2015
Accepted 17 July 2015
Available online 7 August 2015

Keywords:

Ramsey theorem
Monochromatic partitions

Abstract

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$ be a sequence of graphs such that F_{n} is a graph on n vertices with maximum degree at most Δ. We show that there exists an absolute constant C such that the vertices of any 2 -edge-colored complete graph can be partitioned into at most $2^{C \Delta \log \Delta}$ vertex disjoint monochromatic copies of graphs from \mathcal{F}. If each F_{n} is bipartite, then we can improve this bound to $2^{C \Delta}$; this result is optimal up to the constant C.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let K_{n} be a complete graph on n vertices whose edges are colored with r colors ($r \geq 1$). How many monochromatic cycles (single vertices and edges are considered to be cycles) are needed to partition the vertex set of K_{n} ? This question received much attention in the last few years. Let $p(r)$ denote the minimum number of monochromatic cycles needed to partition the vertex set of any r-colored K_{n}. It is not obvious that $p(r)$ is a well-defined function. That is, it is not obvious that there always is a partition whose cardinality is independent of n. However, in [18] Erdős, Gyárfás, and Pyber proved that there exists a constant C such that $p(r) \leq C r^{2} \log r$ (throughout this paper log denotes the natural logarithm). Furthermore, in [18] (see also [26]), the authors conjectured that $p(r)=r$.

The special case $r=2$ of this conjecture was asked earlier by Lehel and for $n \geq n_{0}$ was first proved by Łuczak, Rödl, and Szemerédi [41]. Allen improved on the value of n_{0} [1] and recently Bessy and Thomassé [3] proved the original conjecture for $r=2$. For general r the current best bound is due to Gyárfás, Ruszinkó, Sárközy, and Szemerédi [27] who proved that for $n \geq n_{0}(r)$ we have $p(r) \leq 100 r \log r$. For $r=3$ an approximate version of the conjecture was proved in [28] but, surprisingly, Pokrovskiy [43] found a counterexample to the conjecture. However, in the counterexample, all but one vertex can be covered by r vertex disjoint monochromatic cycles. Thus, a slightly weaker version of the conjecture still can be true, say that, apart from a constant number of vertices, the vertex set can be covered by r vertex disjoint monochromatic cycles.

Let us also note that the above problem was generalized in various directions; for hypergraphs (see [29] and [48]), for complete bipartite graphs (see [18] and [31]), for graphs which are not necessarily complete (see [2] and [47]), and for partitions by monochromatic connected k-regular graphs (see [50] and [51]).

Another area that attracted a lot of interest is the study of Ramsey numbers for bounded degree graphs. For a graph G, the Ramsey number $R(G)$ is the smallest positive integer N such that if the edges of a complete graph K_{N} are partitioned into two color classes then one color class has a subgraph isomorphic to G. The existence of such a positive integer is guaranteed by Ramsey's classical result [45]. Determining $R(G)$ even for very special graphs is notoriously hard (see e.g. [25] or [44]).

[^0]In 1975, Burr and Erdős [6] raised the question whether that every graph G with n vertices and maximum degree Δ has a linear Ramsey number, so $R(G) \leq C(\Delta) n$, for some constant $C(\Delta)$ depending only on Δ. This was proved by Chvátal, Rödl, Szemerédi and Trotter [9] in one of the earliest applications of Szemerédi's celebrated Regularity Lemma [52]. Since the proof uses the Regularity Lemma, the bound on $C(\Delta)$ is quite weak; it is of tower type in Δ. This was improved by Eaton [17], who proved, using a variant of the Regularity Lemma, that the function $C(\Delta)$ can be taken to be of the form $2^{2^{0(\Delta)}}$.

Soon after, Graham, Rödl, and Ruciński [24] improved this further to $C(\Delta) \leq 2^{O\left(\Delta \log ^{2} \Delta\right)}$ and for bipartite graphs to $C(\Delta) \leq 2^{O(\Delta \log \Delta)}$. They also proved that there are bipartite graphs with n vertices and maximum degree Δ for which the Ramsey number is at least $2^{\Omega(\Delta)} n$. Recently, Conlon [10] and, independently, Fox and Sudakov [23] have shown how to remove the $\log \Delta$ factor in the exponent, achieving an essentially best possible bound of $R(G) \leq 2^{0(\Delta)} n$ in the bipartite case. For the non-bipartite graph case, the current best bound is due to Conlon, Fox, and Sudakov [13] $C(\Delta) \leq 2^{0(\Delta \log \Delta)}$. Similar results have been proven for hypergraphs: [14,15,42] use the Hypergraph Regularity Lemma and [12] improves the bounds by avoiding the Regularity Lemma.

It is a natural question (initiated by András Gyárfás) to combine the above two problems and ask how many monochromatic members from a bounded degree graph family are needed to partition the vertex set of a 2-edge-colored K_{N}. In this paper we study this problem. Given a sequence $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$ of graphs, we say it is Δ-bounded if each F_{n} is a graph on n vertices with maximum degree at most Δ. In general we say that \mathcal{F} has some graph property if every graph of \mathcal{F} has that property (e.g. \mathcal{F} is bipartite if F_{n} is bipartite for every n).

We prove the following result on partitions by monochromatic members of \mathcal{F}.
Theorem 1. There exists an absolute constant C such that, for every $\Delta \geq 2$ and every Δ-bounded graph sequence \mathcal{F}, every 2 -edge-colored complete graph can be partitioned into at most $2^{C \Delta \log \Delta}$ vertex disjoint monochromatic copies of graphs from \mathcal{F}.

Thus, perhaps surprisingly, we have the same phenomenon as for cycles; we can partition into monochromatic graphs from \mathcal{F} such that their average size is roughly the same as the single largest monochromatic graph we can find. In the case of a bipartite \mathcal{F} we can eliminate the $\log \Delta$ factor from the exponent to get the following essentially best possible result.

Theorem 2. There exists an absolute constant C such that, for every Δ and every bipartite Δ-bounded graph sequence \mathcal{F}, every 2 -edge-colored complete graph can be partitioned into at most $2^{C \Delta}$ vertex-disjoint monochromatic copies of graphs from \mathcal{F}.

We do not make an effort to optimize the constant C since probably it will be far from optimal anyway. However, in both theorems we must use at least $2^{\Omega(\Delta)}$ parts.

Theorem 3. There exists an absolute constant c such that, for every Δ, there is a bipartite Δ-bounded graph sequence \mathcal{F} and there is a 2-edge-coloring of K_{n} so that covering the vertices of K_{n} using monochromatic copies of graphs from \mathcal{F} requires at least $2^{c \Delta}$ such copies.

It would be desirable to close the gap between the upper and lower bounds for non-bipartite \mathcal{F} as well, though doing so may require improved bounds for the Ramsey numbers of bounded degree graphs. Furthermore, it would be interesting to extend this problem for more than 2 colors.

Let us also mention one interesting special case of our theorem. The k th power of a cycle C is the graph obtained from C by joining every pair of vertices with distance at most k in C. Density questions for powers of cycles have generated a lot of interest; in particular the famous Pósa-Seymour conjecture (see e.g. [7,19-22,34,36,37,40]). Theorem 1 implies the following result on the partition number by monochromatic powers of cycles.

Corollary 1. There exists an absolute constant C so that for every k every 2-colored complete graph can be partitioned into at most $2^{\text {Cklogk }}$ vertex disjoint monochromatic kth powers of cycles.

However, we must note that in this case probably the optimal answer is $O(k)$.

2. Notation and tools

For basic graph concepts see the monograph of Bollobás [4].
$V(G)$ and $E(G)$ denote the vertex-set and the edge-set of the graph G. Let (A, B, E) denote a bipartite graph $G=(V, E)$, where $V=A \cup B$ and $E \subset A \times B$. A proper r-coloring of G is a coloring of its vertices where no two adjacent vertices receive the same color. For a graph G and a subset U of its vertices, $\left.G\right|_{U}$ is the restriction to U of G. Let $N(v)$ denote the set of neighbors of $v \in V$. Hence, $|N(v)|=\operatorname{deg}(v)=\operatorname{deg}_{G}(v)$, the degree of v. Let $\delta(G)$ stand for the minimum and $\Delta(G)$ for the maximum degree in G. When A, B are subsets of $V(G)$, we denote by $e(A, B)$ the number of edges of G with one endpoint in A and the other in B. In particular, we write $\operatorname{deg}(v, U)=e(\{v\}, U)$ for the number of edges from v to U. For non-empty A and B,

$$
d(A, B)=\frac{e(A, B)}{|A||B|}
$$

is the density of the graph between A and B.

https://daneshyari.com/en/article/4646795

Download Persian Version:

https://daneshyari.com/article/4646795

Daneshyari.com

[^0]: * Corresponding author at: Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.

 E-mail addresses: agrinshp@mit.edu (A. Grinshpun), gsarkozy@cs.wpi.edu (G.N. Sárközy).

