Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Monochromatic bounded degree subgraph partitions

Andrey Grinshpun^a, Gábor N. Sárközv^{b,c,*}

^a Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

^b Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O. Box 127, Budapest, H-1364, Hungary

^c Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA

ARTICLE INFO

Article history: Received 29 May 2014 Received in revised form 20 April 2015 Accepted 17 July 2015 Available online 7 August 2015

Keywords: Ramsey theorem Monochromatic partitions

ABSTRACT

Let $\mathcal{F} = \{F_1, F_2, \ldots\}$ be a sequence of graphs such that F_n is a graph on *n* vertices with maximum degree at most Δ . We show that there exists an absolute constant C such that the vertices of any 2-edge-colored complete graph can be partitioned into at most $2^{C\Delta \log \Delta}$ vertex disjoint monochromatic copies of graphs from \mathcal{F} . If each F_n is bipartite, then we can improve this bound to $2^{C\Delta}$; this result is optimal up to the constant C.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let K_n be a complete graph on *n* vertices whose edges are colored with *r* colors (r > 1). How many monochromatic cycles (single vertices and edges are considered to be cycles) are needed to partition the vertex set of K_n ? This question received much attention in the last few years. Let p(r) denote the minimum number of monochromatic cycles needed to partition the vertex set of any r-colored K_n . It is not obvious that p(r) is a well-defined function. That is, it is not obvious that there always is a partition whose cardinality is independent of n. However, in [18] Erdős, Gyárfás, and Pyber proved that there exists a constant C such that $p(r) < Cr^2 \log r$ (throughout this paper log denotes the natural logarithm). Furthermore, in [18] (see also [26]), the authors conjectured that p(r) = r.

The special case r = 2 of this conjecture was asked earlier by Lehel and for $n > n_0$ was first proved by Łuczak, Rödl, and Szemerédi [41]. Allen improved on the value of n_0 [1] and recently Bessy and Thomassé [3] proved the original conjecture for r = 2. For general r the current best bound is due to Gyárfás, Ruszinkó, Sárközy, and Szemerédi [27] who proved that for $n > n_0(r)$ we have $p(r) < 100r \log r$. For r = 3 an approximate version of the conjecture was proved in [28] but, surprisingly, Pokrovskiy [43] found a counterexample to the conjecture. However, in the counterexample, all but one vertex can be covered by r vertex disjoint monochromatic cycles. Thus, a slightly weaker version of the conjecture still can be true, say that, apart from a constant number of vertices, the vertex set can be covered by r vertex disjoint monochromatic cycles.

Let us also note that the above problem was generalized in various directions; for hypergraphs (see [29] and [48]), for complete bipartite graphs (see [18] and [31]), for graphs which are not necessarily complete (see [2] and [47]), and for partitions by monochromatic connected *k*-regular graphs (see [50] and [51]).

Another area that attracted a lot of interest is the study of Ramsey numbers for bounded degree graphs. For a graph G, the Ramsey number R(G) is the smallest positive integer N such that if the edges of a complete graph K_N are partitioned into two color classes then one color class has a subgraph isomorphic to G. The existence of such a positive integer is guaranteed by Ramsey's classical result [45]. Determining R(G) even for very special graphs is notoriously hard (see e.g. [25] or [44]).

http://dx.doi.org/10.1016/j.disc.2015.07.005 0012-365X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA. E-mail addresses: agrinshp@mit.edu (A. Grinshpun), gsarkozy@cs.wpi.edu (G.N. Sárközy).

In 1975, Burr and Erdős [6] raised the question whether that every graph *G* with *n* vertices and maximum degree Δ has a linear Ramsey number, so $R(G) \leq C(\Delta)n$, for some constant $C(\Delta)$ depending only on Δ . This was proved by Chvátal, Rödl, Szemerédi and Trotter [9] in one of the earliest applications of Szemerédi's celebrated Regularity Lemma [52]. Since the proof uses the Regularity Lemma, the bound on $C(\Delta)$ is quite weak; it is of tower type in Δ . This was improved by Eaton [17], who proved, using a variant of the Regularity Lemma, that the function $C(\Delta)$ can be taken to be of the form $2^{2^{O(\Delta)}}$.

Soon after, Graham, Rödl, and Ruciński [24] improved this further to $C(\Delta) \leq 2^{0(\Delta \log^2 \Delta)}$ and for bipartite graphs to $C(\Delta) \leq 2^{0(\Delta \log \Delta)}$. They also proved that there are bipartite graphs with *n* vertices and maximum degree Δ for which the Ramsey number is at least $2^{\Omega(\Delta)}n$. Recently, Conlon [10] and, independently, Fox and Sudakov [23] have shown how to remove the log Δ factor in the exponent, achieving an essentially best possible bound of $R(G) \leq 2^{O(\Delta \log \Delta)}n$ in the bipartite case. For the non-bipartite graph case, the current best bound is due to Conlon, Fox, and Sudakov [13] $C(\Delta) \leq 2^{O(\Delta \log \Delta)}$. Similar results have been proven for hypergraphs: [14,15,42] use the Hypergraph Regularity Lemma and [12] improves the bounds by avoiding the Regularity Lemma.

It is a natural question (initiated by András Gyárfás) to combine the above two problems and ask how many monochromatic members from a bounded degree graph family are needed to partition the vertex set of a 2-edge-colored K_N . In this paper we study this problem. Given a sequence $\mathcal{F} = \{F_1, F_2, \ldots\}$ of graphs, we say it is Δ -bounded if each F_n is a graph on n vertices with maximum degree at most Δ . In general we say that \mathcal{F} has some graph property if every graph of \mathcal{F} has that property (e.g. \mathcal{F} is bipartite if F_n is bipartite for every n).

We prove the following result on partitions by monochromatic members of \mathcal{F} .

Theorem 1. There exists an absolute constant *C* such that, for every $\Delta \geq 2$ and every Δ -bounded graph sequence \mathcal{F} , every 2-edge-colored complete graph can be partitioned into at most $2^{C\Delta \log \Delta}$ vertex disjoint monochromatic copies of graphs from \mathcal{F} .

Thus, perhaps surprisingly, we have the same phenomenon as for cycles; we can partition into monochromatic graphs from \mathcal{F} such that their average size is roughly the same as the single largest monochromatic graph we can find. In the case of a bipartite \mathcal{F} we can eliminate the log Δ factor from the exponent to get the following essentially best possible result.

Theorem 2. There exists an absolute constant C such that, for every Δ and every bipartite Δ -bounded graph sequence \mathcal{F} , every 2-edge-colored complete graph can be partitioned into at most $2^{C\Delta}$ vertex-disjoint monochromatic copies of graphs from \mathcal{F} .

We do not make an effort to optimize the constant *C* since probably it will be far from optimal anyway. However, in both theorems we must use at least $2^{\Omega(\Delta)}$ parts.

Theorem 3. There exists an absolute constant c such that, for every Δ , there is a bipartite Δ -bounded graph sequence \mathcal{F} and there is a 2-edge-coloring of K_n so that covering the vertices of K_n using monochromatic copies of graphs from \mathcal{F} requires at least $2^{c\Delta}$ such copies.

It would be desirable to close the gap between the upper and lower bounds for non-bipartite \mathcal{F} as well, though doing so may require improved bounds for the Ramsey numbers of bounded degree graphs. Furthermore, it would be interesting to extend this problem for more than 2 colors.

Let us also mention one interesting special case of our theorem. The *k*th *power* of a cycle *C* is the graph obtained from *C* by joining every pair of vertices with distance at most *k* in *C*. Density questions for powers of cycles have generated a lot of interest; in particular the famous Pósa–Seymour conjecture (see e.g. [7,19–22,34,36,37,40]). Theorem 1 implies the following result on the partition number by monochromatic powers of cycles.

Corollary 1. There exists an absolute constant C so that for every k every 2-colored complete graph can be partitioned into at most $2^{Ck \log k}$ vertex disjoint monochromatic kth powers of cycles.

However, we must note that in this case probably the optimal answer is O(k).

2. Notation and tools

For basic graph concepts see the monograph of Bollobás [4].

V(G) and E(G) denote the vertex-set and the edge-set of the graph *G*. Let (A, B, E) denote a bipartite graph G = (V, E), where $V = A \cup B$ and $E \subset A \times B$. A proper *r*-coloring of *G* is a coloring of its vertices where no two adjacent vertices receive the same color. For a graph *G* and a subset *U* of its vertices, $G|_U$ is the restriction to *U* of *G*. Let N(v) denote the set of neighbors of $v \in V$. Hence, $|N(v)| = deg(v) = deg_G(v)$, the degree of *v*. Let $\delta(G)$ stand for the minimum and $\Delta(G)$ for the maximum degree in *G*. When *A*, *B* are subsets of V(G), we denote by e(A, B) the number of edges of *G* with one endpoint in *A* and the other in *B*. In particular, we write $deg(v, U) = e(\{v\}, U)$ for the number of edges from *v* to *U*. For non-empty *A* and *B*,

$$d(A, B) = \frac{e(A, B)}{|A||B|}$$

is the *density* of the graph between A and B.

Download English Version:

https://daneshyari.com/en/article/4646795

Download Persian Version:

https://daneshyari.com/article/4646795

Daneshyari.com