On acyclic edge-coloring of the complete bipartite graphs $K_{2 p-1,2 p-1}$ for odd prime p

Ayineedi Venkateswarlu ${ }^{\text {a,* }}$, Santanu Sarkar ${ }^{\text {b }}$
${ }^{\text {a }}$ Computer Science Unit, Indian Statistical Institute - Chennai Centre, MGR Knowledge City Road, Taramani, Chennai - 600113, India
${ }^{\text {b }}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600036, India

ARTICLE INFO

Article history:

Received 1 January 2015
Accepted 20 July 2015
Available online 13 August 2015

Keywords:

Acyclic edge-coloring
Acyclic chromatic index
Perfect matching
Perfect 1-factorization
Complete bipartite graphs

Abstract

An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic (2colored) cycles. The acyclic chromatic index of a graph G, denoted by $a^{\prime}(G)$, is the least integer k such that G admits an acyclic edge-coloring using k colors. Let $\Delta=\Delta(G)$ denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by $K_{n, n}$. Basavaraju, Chandran and Kummini proved that $a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$ when n is odd. Basavaraju and Chandran showed that $a^{\prime}\left(K_{p, p}\right) \leq p+2$ which implies $a^{\prime}\left(K_{p, p}\right)=p+2=\Delta+2$ when p is an odd prime, and the main tool in their proof is perfect 1-factorization of $K_{p, p}$. In this paper we study the case of $K_{2 p-1,2 p-1}$ which also possess perfect 1 -factorization, where p is odd prime. We show that $K_{2 p-1,2 p-1}$ admits an acyclic edge-coloring using $2 p+1$ colors and so we get $a^{\prime}\left(K_{2 p-1,2 p-1}\right)=2 p+1=\Delta+2$ when p is an odd prime.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a finite and simple graph. A proper edge-coloring of G is an assignment of colors to the edges so that no two adjacent edges have same color. So it is a map $\theta: E \rightarrow \mathcal{C}$ with $\theta(e) \neq \theta(f)$ for any adjacent edges $e, f \in E$, where \mathcal{C} is the set of colors. The chromatic index, denoted by $\chi^{\prime}(G)$, is the minimum number of colors needed to properly color the edges of G. A proper edge-coloring of G is acyclic if there is no two colored cycle in G. The minimum number of colors required in an acyclic edge-coloring of G is the acyclic edge chromatic number (also called acyclic chromatic index) and is denoted by $a^{\prime}(G)$. The notion of acyclic coloring was first introduced by Grünbaum [7] in 1973, and the concept of acyclic edge-coloring was first studied by Fiamčík [6]. Let $\Delta=\Delta(G)$ be the maximum degree of a vertex in G. It is obvious that any proper edgecoloring requires at least Δ colors. Vizing [16] proved that there always exists a proper edge-coloring with $\Delta+1$ colors. Since any acyclic edge coloring is proper, we must have $a^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$. On the other hand, in 1978, Fiamčík [6] (also Alon, Sudakov and Zaks [1]) posed the following conjecture:
for any graph $G, a^{\prime}(G) \leq \Delta+2$.
In [1], it was proved that there exists a constant c such that $a^{\prime}(G) \leq \Delta+2$ for any graph with girth is at least $c \Delta \log \Delta$. It was also proved in [1] that $a^{\prime}(G) \leq \Delta+2$ for almost all Δ-regular graphs. Later Něsetřil and Wormald [15] improved this bound and showed that $a^{\prime}(G) \leq \Delta+1$ for a random regular graph G. In another direction, there have been many results

[^0]giving upper bounds on $a^{\prime}(G)$ for arbitrary graphs or a class of graphs. Recently, Ndreca et al. obtained $a^{\prime}(G) \leq 9.62 \Delta$ [14] which is currently the best upperbound for an arbitrary graph G. See [17, Section 3.3] for a nice account of recent results.

The above conjecture (1) was shown to be true for some special classes of graphs. Burnstein [5] showed that $a^{\prime}(G) \leq 5$ when $\Delta=3$. Hence the conjecture is true when $\Delta \leq 3$. Muthu, Narayanan and Subramanian proved that the conjecture holds true for grid-like graphs [11] and outerplanner graphs [12]. It has been observed that determining $a^{\prime}(G)$ is a hard problem from both theoretical and algorithmic points of view [17, p. 2119]. In fact, we do not yet know the values of $a^{\prime}(G)$ for some simple and highly structured graphs like complete graphs and complete bipartite graphs in general. Fortunately, we can get the exact value of $a^{\prime}(G)$ for some cases of complete bipartite graphs, thanks to the perfect 1 -factorization.

Let $K_{n, n}$ be the complete bipartite graph with n vertices on each side. The complete bipartite graph $K_{n, n}$ is said to have a perfect 1 -factorization if the edges of $K_{n, n}$ can be decomposed into n disjoint perfect matchings such that the union of any two perfect matchings gives a Hamiltonian cycle. It is known that when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$, where p is an odd prime, or $n+2<50$ and odd, then $K_{n+2, n+2}$ has a perfect 1-factorization (see [4]). One can easily see that if $K_{n+2, n+2}$ has a perfect 1 -factorization then $a^{\prime}\left(K_{n, n}\right) \leq a^{\prime}\left(K_{n+1, n+1}\right) \leq n+2$. And also we have

$$
a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2 \quad \text { when } n \text { is odd }
$$

due to Basavaraju, Chandran and Kummini [3]. Hence $a^{\prime}\left(K_{n, n}\right)=n+2=\Delta+2$ when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$. The main idea here is to give different colors to the edges in different 1-factors in $K_{n+2, n+2}$, and removal of two vertices on each side and their associated edges gives the required edge-coloring of $K_{n, n}$. Similarly, by a result of Guldan [8, Corollary 1], we can also get $a^{\prime}\left(K_{n+1, n+1}\right)=n+2=\Delta+1$ when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$. But a different approach is needed to deal with $K_{n+2, n+2}$ when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$. In 2009, Basavaraju and Chandran [2] proved that $a^{\prime}\left(K_{p, p}\right)=p+2=\Delta+2$ for any odd prime p. The main tool in their approach is again perfect 1 -factorization of $K_{p, p}$. In the remaining two cases, namely, $n+2 \in\left\{2 p-1, p^{2}\right\}$ the value of $a^{\prime}\left(K_{n+2, n+2}\right)$ is not yet known. In this paper we study the case of $K_{2 p-1,2 p-1}$ which also possesses a perfect 1 -factorization, where p is odd prime. We show that $K_{2 p-1,2 p-1}$ admits an acyclic edge-coloring using $2 p+1$ colors.

2. Our result

We state our main result as follows.
Theorem 1. $a^{\prime}\left(K_{2 p-1,2 p-1}\right)=2 p+1=\Delta+2$, where p is an odd prime.
We follow the proof technique of [2] to present the proof of Theorem 1. Accordingly we first consider a perfect 1 -factorization of $K_{2 p-1,2 p-1}$. Next we consider another perfect matching which satisfies certain conditions. Then we present an edge-coloring of $K_{2 p-1,2 p-1}$ using $2 p+1$ colors and show that it is acyclic. In general, for odd n if $K_{n, n}$ possesses a perfect 1-factorization, the difficulty is to identify a suitable perfect matching that can help to get an acyclic edge-coloring of $K_{n, n}$ using only $n+2$ colors. The main contribution of this paper is to identify such a suitable perfect matching and provide an acyclic edge-coloring of $K_{2 p-1,2 p-1}$ using $2 p+1$ colors, where p is an odd prime.

Proof of Theorem 1. We label the vertices of $K_{2 p-1,2 p-1}$ on each side with elements of the set $I=\{1,2, \ldots, 2 p-1\}=$ $\mathbb{Z}_{2 p} \backslash\{0\}$, and so a perfect matching (1-factor) can be represented by a permutation of the label set I. Let us now present a perfect 1-factorization of $K_{2 p-1,2 p-1}$ using permutations of the label set I. Let M_{j} be the perfect matching corresponding to the permutation π_{j} for $j \in I$ which we define below. In the definitions of π_{j} below, $k \in I\left(=\mathbb{Z}_{2 p} \backslash\{0\}\right)$ and the operations are understood to be done modulo $2 p$ (that is in $\mathbb{Z}_{2 p}$).

For $i=1,2, \ldots, p-1$, define

$$
\pi_{2 i}(k)= \begin{cases}2 i & \text { if } k=2 i \\ i+p & \text { if } k=i \\ i & \text { if } k=i+p \\ 2 i-k & \text { otherwise }\end{cases}
$$

For $i=0,1,2, \ldots, p-1$ and $i \neq \frac{p-1}{2}$, define

$$
\pi_{2 i+1}(k)= \begin{cases}2 i+1 & \text { if } k=2 i+1 \\ k-(2 i+1) & \text { if } k \neq 2 i+1 \text { and } k \text { is odd } \\ k+(2 i+1) & \text { if } k \text { is even. }\end{cases}
$$

Also

$$
\pi_{p}(k)=2 p-k=-k
$$

A perfect 1-factorization of $K_{2 p-1,2 p-1}$ is presented in [13, p. 31] applying Laufer's technique [10] on the formulation of perfect 1-factorization of the complete bipartite graph $K_{2 p}$ given by Kobayashi [9]. The formulation presented above is a simple modification of the formulation given in [13, p. 31] to suit our representation. So the decomposition of the edges into

https://daneshyari.com/en/article/4646798

Download Persian Version:
https://daneshyari.com/article/4646798

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: venku@isichennai.res.in (A. Venkateswarlu), santanu@iitm.ac.in (S. Sarkar).
 http://dx.doi.org/10.1016/j.disc.2015.07.010
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

