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a b s t r a c t

An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic (2-
colored) cycles. The acyclic chromatic index of a graph G, denoted by a′(G), is the least
integer k such that G admits an acyclic edge-coloring using k colors. Let ∆ = ∆(G) de-
note the maximum degree of a vertex in a graph G. A complete bipartite graph with n
vertices on each side is denoted by Kn,n. Basavaraju, Chandran and Kummini proved that
a′(Kn,n) ≥ n + 2 = ∆ + 2 when n is odd. Basavaraju and Chandran showed that
a′(Kp,p) ≤ p + 2 which implies a′(Kp,p) = p + 2 = ∆ + 2 when p is an odd prime,
and the main tool in their proof is perfect 1-factorization of Kp,p. In this paper we study
the case of K2p−1,2p−1 which also possess perfect 1-factorization, where p is odd prime. We
show that K2p−1,2p−1 admits an acyclic edge-coloring using 2p + 1 colors and so we get
a′(K2p−1,2p−1) = 2p + 1 = ∆ + 2 when p is an odd prime.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite and simple graph. A proper edge-coloring of G is an assignment of colors to the edges so that no
two adjacent edges have same color. So it is a map θ : E → C with θ(e) ≠ θ(f ) for any adjacent edges e, f ∈ E, where C is
the set of colors. The chromatic index, denoted byχ ′(G), is theminimumnumber of colors needed to properly color the edges
of G. A proper edge-coloring of G is acyclic if there is no two colored cycle in G. The minimum number of colors required
in an acyclic edge-coloring of G is the acyclic edge chromatic number (also called acyclic chromatic index) and is denoted by
a′(G). The notion of acyclic coloring was first introduced by Grünbaum [7] in 1973, and the concept of acyclic edge-coloring
was first studied by Fiamc̆ík [6]. Let ∆ = ∆(G) be the maximum degree of a vertex in G. It is obvious that any proper edge-
coloring requires at least ∆ colors. Vizing [16] proved that there always exists a proper edge-coloring with ∆ + 1 colors.
Since any acyclic edge coloring is proper, we must have a′(G) ≥ χ ′(G) ≥ ∆. On the other hand, in 1978, Fiamc̆ík [6] (also
Alon, Sudakov and Zaks [1]) posed the following conjecture:

for any graph G, a′(G) ≤ ∆ + 2. (1)

In [1], it was proved that there exists a constant c such that a′(G) ≤ ∆ + 2 for any graph with girth is at least c∆ log∆.
It was also proved in [1] that a′(G) ≤ ∆ + 2 for almost all ∆-regular graphs. Later Něsetřil andWormald [15] improved this
bound and showed that a′(G) ≤ ∆ + 1 for a random regular graph G. In another direction, there have been many results
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giving upper bounds on a′(G) for arbitrary graphs or a class of graphs. Recently, Ndreca et al. obtained a′(G) ≤ 9.62∆ [14]
which is currently the best upperbound for an arbitrary graph G. See [17, Section 3.3] for a nice account of recent results.

The above conjecture (1) was shown to be true for some special classes of graphs. Burnstein [5] showed that a′(G) ≤ 5
when ∆ = 3. Hence the conjecture is true when ∆ ≤ 3. Muthu, Narayanan and Subramanian proved that the conjecture
holds true for grid-like graphs [11] and outerplanner graphs [12]. It has been observed that determining a′(G) is a hard
problem from both theoretical and algorithmic points of view [17, p. 2119]. In fact, we do not yet know the values of a′(G)
for some simple and highly structured graphs like complete graphs and complete bipartite graphs in general. Fortunately,
we can get the exact value of a′(G) for some cases of complete bipartite graphs, thanks to the perfect 1-factorization.

Let Kn,n be the complete bipartite graph with n vertices on each side. The complete bipartite graph Kn,n is said to have a
perfect 1-factorization if the edges of Kn,n can be decomposed into n disjoint perfect matchings such that the union of any
two perfect matchings gives a Hamiltonian cycle. It is known that when n + 2 ∈ {p, 2p − 1, p2}, where p is an odd prime,
or n + 2 < 50 and odd, then Kn+2,n+2 has a perfect 1-factorization (see [4]). One can easily see that if Kn+2,n+2 has a perfect
1-factorization then a′(Kn,n) ≤ a′(Kn+1,n+1) ≤ n + 2. And also we have

a′(Kn,n) ≥ n + 2 = ∆ + 2 when n is odd

due to Basavaraju, Chandran and Kummini [3]. Hence a′(Kn,n) = n + 2 = ∆ + 2 when n + 2 ∈ {p, 2p − 1, p2}. The main
idea here is to give different colors to the edges in different 1-factors in Kn+2,n+2, and removal of two vertices on each side
and their associated edges gives the required edge-coloring of Kn,n. Similarly, by a result of Guldan [8, Corollary 1], we can
also get a′(Kn+1,n+1) = n + 2 = ∆ + 1 when n + 2 ∈ {p, 2p − 1, p2}. But a different approach is needed to deal with
Kn+2,n+2 when n + 2 ∈ {p, 2p − 1, p2}. In 2009, Basavaraju and Chandran [2] proved that a′(Kp,p) = p + 2 = ∆ + 2 for
any odd prime p. The main tool in their approach is again perfect 1-factorization of Kp,p. In the remaining two cases, namely,
n + 2 ∈ {2p − 1, p2} the value of a′(Kn+2,n+2) is not yet known. In this paper we study the case of K2p−1,2p−1 which also
possesses a perfect 1-factorization, where p is odd prime. We show that K2p−1,2p−1 admits an acyclic edge-coloring using
2p + 1 colors.

2. Our result

We state our main result as follows.

Theorem 1. a′(K2p−1,2p−1) = 2p + 1 = ∆ + 2, where p is an odd prime.

We follow the proof technique of [2] to present the proof of Theorem 1. Accordingly we first consider a perfect
1-factorization of K2p−1,2p−1. Next we consider another perfectmatchingwhich satisfies certain conditions. Thenwe present
an edge-coloring of K2p−1,2p−1 using 2p + 1 colors and show that it is acyclic. In general, for odd n if Kn,n possesses a perfect
1-factorization, the difficulty is to identify a suitable perfect matching that can help to get an acyclic edge-coloring of Kn,n
using only n + 2 colors. The main contribution of this paper is to identify such a suitable perfect matching and provide an
acyclic edge-coloring of K2p−1,2p−1 using 2p + 1 colors, where p is an odd prime.

Proof of Theorem 1. We label the vertices of K2p−1,2p−1 on each side with elements of the set I = {1, 2, . . . , 2p − 1} =

Z2p\{0}, and so a perfect matching (1-factor) can be represented by a permutation of the label set I . Let us now present a
perfect 1-factorization of K2p−1,2p−1 using permutations of the label set I . Let Mj be the perfect matching corresponding to
the permutation πj for j ∈ I which we define below. In the definitions of πj below, k ∈ I (=Z2p\{0}) and the operations are
understood to be done modulo 2p (that is in Z2p).

For i = 1, 2, . . . , p − 1, define

π2i(k) =


2i if k = 2i
i + p if k = i
i if k = i + p
2i − k otherwise.

For i = 0, 1, 2, . . . , p − 1 and i ≠
p−1
2 , define

π2i+1(k) =

2i + 1 if k = 2i + 1
k − (2i + 1) if k ≠ 2i + 1 and k is odd
k + (2i + 1) if k is even.

Also

πp(k) = 2p − k = −k.

A perfect 1-factorization of K2p−1,2p−1 is presented in [13, p. 31] applying Laufer’s technique [10] on the formulation of
perfect 1-factorization of the complete bipartite graph K2p given by Kobayashi [9]. The formulation presented above is a
simplemodification of the formulation given in [13, p. 31] to suit our representation. So the decomposition of the edges into
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