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a b s t r a c t

A family A of sets is t-intersecting if the size of the intersection of every pair of sets in A is
at least t , and it is an r-family if every set in A has size r . A well-known theorem of Erdős,
Ko, and Rado bounds the size of a t-intersecting r-family of subsets of an n-element set, or
equivalently of (r − 1)-dimensional faces of a simplex with n vertices. As a generalization
of the Erdős–Ko–Rado theorem, Borg presented a conjecture concerning the size of a
t-intersecting r-family of faces of an arbitrary simplicial complex. He proved his conjecture
for shifted complexes. In this paper we give a new proof for this result based on work of
Woodroofe. Using algebraic shifting we verify Borg’s conjecture in the case of sequentially
Cohen–Macaulay i-near-cones for t = i.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, the set of positive integers {1, 2, . . .} is denoted by N. For m, n ∈ N with m ≤ n, the set
{i ∈ N : m ≤ i ≤ n} is denoted by [m, n]; for m = 1, we also write [n].

Let t and r be natural numbers with t ≤ r . A family A of sets is t-intersecting if the size of the intersection of every pair
of sets in A is at least t , and it is an r-family if every set in A has size r .

A classical result in extremal set theory is the famous theorem of Erdős, Ko, and Rado [4]. There are several interesting
proofs and generalizations of this theorem. For a nice survey on this topic we refer the reader to [2]. The Erdős–Ko–Rado
Theorem asserts that the largest possible t-intersecting r-families of subsets of [n] are the families of all r-subsets containing
some fixed t-subset of points whenever n is sufficiently large with respect to t and r (whenever n ≥ n0(t, r), where we use
n0(t, r) to denote the least integer for which the theorem is valid). A more precise statement of this result was proved over
a number of years by Frankl andWilson [5,11], following a conjecture by Erdős. Indeed, they proved the following theorem.

Theorem 1.1. Let t and r be natural numbers with t ≤ r. If n ≥ (t + 1)(r − t + 1) and A is a t-intersecting r-family of subsets
of [n], then |A| ≤

 n−t
r−t


.

In this paper we consider a generalization of Theorem 1.1 for simplicial complexes. Let us start with some preliminaries
from simplicial complexes.

A simplicial complex ∆ on the set of vertices V (∆) is a collection of subsets of [n] that is closed under taking subsets;
that is, if F ∈ ∆ and F ′

⊆ F , then also F ′
∈ ∆. Every element F ∈ ∆ is called a face of ∆. The dimension of a face F is defined

to be |F | − 1. The dimension of ∆, which is denoted by dim∆, is defined to be d− 1, where d = max{|F | : F ∈ ∆}. A facet of
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∆ is a maximal face of ∆ with respect to inclusion. Let F (∆) denote the set of facets of ∆. It is clear that F (∆) determines
∆. When F (∆) = {F1, . . . , Fm}, we write ∆ = ⟨F1, . . . , Fm⟩ and say that ∆ is generated by F1, . . . , Fm. A simplicial complex
∆ is pure if all facets of ∆ have the same size. The link of ∆ with respect to a face σ ∈ ∆, denoted by lk∆(σ ), is the simplicial
complex

lk∆(σ ) = {τ ⊆ [n] \ σ : τ ∪ σ ∈ ∆}

and the anti-star of ∆ with respect to a face σ ∈ ∆, denoted by ast∆(σ ), is the simplicial complex

ast∆(σ ) = {τ ∈ ∆ : τ ∩ σ = ∅}.

Also, for every integer s ≥ 0 we define

∆(s) = {σ ∈ ∆ : |σ | = s}.

Let ∆ be a simplicial complex. The simplicial complex ∆(i)
:= {F ∈ ∆ : dim F ≤ i} is the i-skeleton of ∆. Also, the

simplicial complex ∆[i]
:= ⟨F ∈ ∆ : dim F = i⟩ is the i-pure skeleton of ∆.

A face of ∆ of size r is an r-face of ∆. Let fr denote the number of r-faces of ∆. The sequence (f0, f1, . . . , . . . , fd) is called
the f -vector of ∆.

Note. Many authors define an r-face to be a face with dimension r . We follow Swartz [10] and Woodroofe [12] in
considering an r-face to be a face with size r (rather than dimension r).

One of the connections between combinatorics and commutative algebra is via rings constructed from the combinatorial
objects. Let R be the polynomial ring K[x1, . . . , xn] in n variables over a field K, and let ∆ be a simplicial complex on [n].
For every subset F ⊆ [n], we set xF =


i∈F xi. The Stanley–Reisner ideal of ∆ over K is the ideal I∆ of R that is generated by

those squarefree monomials xF with F ∉ ∆. In other words, I∆ = ⟨xF : F ∈ N (∆)⟩, where N (∆) denotes the set of minimal
nonfaces of ∆ with respect to inclusion. The Stanley–Reisner ring of ∆ over K, denoted by K[∆], is defined by K[∆] = R/I∆.

We recall a notion from commutative algebra. Let R = K[x1, . . . , xn], and letM be a nonzero finitely generated R-module.
We say that M is Cohen–Macaulay if for every prime ideal p ∈ Spec(R), the equality depth Mp = dimMp holds true. We say
that a simplicial complex ∆ is Cohen–Macaulay over a field K if the Stanley–Reisner ring K[∆] of ∆ is Cohen–Macaulay. A
well-known result of Reisner says that a simplicial complex ∆ is Cohen–Macaulay over K if and only if for every F ∈ ∆

and for i less than dim(lk∆(F)), it holds thatHi(lk∆(F); K) = 0, whereHi(∆; K) denotes the simplicial homology of ∆ with
coefficients in K. We say that a simplicial complex ∆ is sequentially Cohen–Macaulay over a field K if every pure skeleton of
∆ is Cohen–Macaulay over K.

Woodroofe [12] defined the depth of ∆ over K as

depthK∆ = max{ℓ : ∆(ℓ) is Cohen–Macaulay over K}.

Wenote that depthK∆ is atmost theminimum facet dimension of∆, and equality holds if∆ is sequentially Cohen–Macaulay
over K.

We restate Theorem 1.1 using the language of simplicial complexes:

Theorem 1.2. Let t and r be natural numbers with t ≤ r. If n ≥ (t + 1)(r − t + 1) and A is a t-intersecting r-family of faces
of a simplex ∆ with n vertices, then |A| ≤ fr−t(lk∆σ), where σ is a t-face of ∆.

Definition 1.3. A simplicial complex ∆ is (t, r)-EKR if every t-intersecting r-family A of faces of ∆ satisfies |A| ≤

max fr−t(lk∆σ), where the maximum is taken over all t-faces σ of ∆. Equivalently, ∆ is (t, r)-EKR if the set of all r-faces
containing some t-face σ has maximal size among all t-intersecting families of r-faces.

As a generalization of Theorem 1.2, Borg conjectured that:

Conjecture 1.4 ([1, Conjecture 2.6]). Let t and r be natural numbers with t ≤ r. Let ∆ be a simplicial complex having minimal
facet size k ≥ (t + 1)(r − t + 1), and suppose that S ≠ ∅ is a subset of [t, r]. If A is a t-intersecting family of faces of ∆ with
A ⊆


s∈S ∆(s), then

|A| ≤ max

s∈S

fs−t(lk∆σ), (∗)

where the maximum is taken over all t-faces σ of ∆.

Borg proved Conjecture 1.4 for shifted complexes [1, Theorem 2.7]. Using algebraic shifting,Woodroofe gave a new proof
for [1, Theorem 2.7] in the special case t = 1 and S = {r} [12, Lemma 3.1]. In this paper we extend Woodroofe’s proof and
give a new proof for [1, Theorem 2.7] using algebraic shifting (Corollary 2.2). Woodroofe also proved that Conjecture 1.4
is true for sequentially Cohen–Macaulay near-cones in the special case t = 1 and S = {r} [12, Corollary 3.4]. We also
generalize this result and prove that Conjecture 1.4 is true for every sequentially Cohen–Macaulay i-near-cone in the case
t = i (Corollary 3.9).
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