

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Intersecting faces of a simplicial complex via algebraic shifting

S.A. Seyed Fakhari

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

ARTICLE INFO

Article history:
Received 12 September 2013
Received in revised form 23 July 2015
Accepted 24 July 2015
Available online 13 August 2015

Keywords:
Simplicial complex
Erdős-Ko-Rado theorem
Algebraic shifting
i-Near-cone
Sequentially Cohen-Macaulay simplicial
complex

ABSTRACT

A family $\mathcal A$ of sets is t-intersecting if the size of the intersection of every pair of sets in $\mathcal A$ is at least t, and it is an r-family if every set in $\mathcal A$ has size r. A well-known theorem of Erdős, Ko, and Rado bounds the size of a t-intersecting r-family of subsets of an n-element set, or equivalently of (r-1)-dimensional faces of a simplex with n vertices. As a generalization of the Erdős–Ko–Rado theorem, Borg presented a conjecture concerning the size of a t-intersecting r-family of faces of an arbitrary simplicial complex. He proved his conjecture for shifted complexes. In this paper we give a new proof for this result based on work of Woodroofe. Using algebraic shifting we verify Borg's conjecture in the case of sequentially Cohen–Macaulay i-near-cones for t=i.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, the set of positive integers $\{1, 2, ...\}$ is denoted by \mathbb{N} . For $m, n \in \mathbb{N}$ with $m \leq n$, the set $\{i \in \mathbb{N} : m \leq i \leq n\}$ is denoted by [m, n]; for m = 1, we also write [n].

Let t and r be natural numbers with $t \le r$. A family \mathcal{A} of sets is t-intersecting if the size of the intersection of every pair of sets in \mathcal{A} is at least t, and it is an r-family if every set in \mathcal{A} has size r.

A classical result in extremal set theory is the famous theorem of Erdős, Ko, and Rado [4]. There are several interesting proofs and generalizations of this theorem. For a nice survey on this topic we refer the reader to [2]. The Erdős–Ko–Rado Theorem asserts that the largest possible t-intersecting r-families of subsets of [n] are the families of all r-subsets containing some fixed t-subset of points whenever n is sufficiently large with respect to t and r (whenever $n \ge n_0(t,r)$, where we use $n_0(t,r)$ to denote the least integer for which the theorem is valid). A more precise statement of this result was proved over a number of years by Frankl and Wilson [5,11], following a conjecture by Erdős. Indeed, they proved the following theorem.

Theorem 1.1. Let t and r be natural numbers with $t \le r$. If $n \ge (t+1)(r-t+1)$ and A is a t-intersecting r-family of subsets of [n], then $|A| \le {n-t \choose r-t}$.

In this paper we consider a generalization of Theorem 1.1 for simplicial complexes. Let us start with some preliminaries from simplicial complexes.

A simplicial complex Δ on the set of vertices $V(\Delta)$ is a collection of subsets of [n] that is closed under taking subsets; that is, if $F \in \Delta$ and $F' \subseteq F$, then also $F' \in \Delta$. Every element $F \in \Delta$ is called a *face* of Δ . The *dimension* of a face F is defined to be |F| - 1. The *dimension* of Δ , which is denoted by dim Δ , is defined to be d - 1, where $d = \max\{|F| : F \in \Delta\}$. A *facet* of

 Δ is a maximal face of Δ with respect to inclusion. Let $\mathcal{F}(\Delta)$ denote the set of facets of Δ . It is clear that $\mathcal{F}(\Delta)$ determines Δ . When $\mathcal{F}(\Delta) = \{F_1, \dots, F_m\}$, we write $\Delta = \langle F_1, \dots, F_m \rangle$ and say that Δ is *generated by* F_1, \dots, F_m . A simplicial complex Δ is *pure* if all facets of Δ have the same size. The *link* of Δ with respect to a face $\sigma \in \Delta$, denoted by $lk_{\Delta}(\sigma)$, is the simplicial complex

$$lk_{\Delta}(\sigma) = \{ \tau \subset [n] \setminus \sigma : \tau \cup \sigma \in \Delta \}$$

and the *anti-star* of Δ with respect to a face $\sigma \in \Delta$, denoted by $ast_{\Lambda}(\sigma)$, is the simplicial complex

$$\operatorname{ast}_{\Delta}(\sigma) = \{ \tau \in \Delta : \tau \cap \sigma = \emptyset \}.$$

Also, for every integer $s \ge 0$ we define

$$\Delta_{(s)} = {\sigma \in \Delta : |\sigma| = s}.$$

Let Δ be a simplicial complex. The simplicial complex $\Delta^{(i)} := \{F \in \Delta : \dim F \leq i\}$ is the *i-skeleton* of Δ . Also, the simplicial complex $\Delta^{[i]} := \langle F \in \Delta : \dim F = i \rangle$ is the *i-pure skeleton* of Δ .

A face of Δ of size r is an r-face of Δ . Let f_r denote the number of r-faces of Δ . The sequence (f_0, f_1, \ldots, f_d) is called the f-vector of Δ .

Note. Many authors define an r-face to be a face with dimension r. We follow Swartz [10] and Woodroofe [12] in considering an r-face to be a face with size r (rather than dimension r).

One of the connections between combinatorics and commutative algebra is via rings constructed from the combinatorial objects. Let R be the polynomial ring $\mathbb{K}[x_1,\ldots,x_n]$ in n variables over a field \mathbb{K} , and let Δ be a simplicial complex on [n]. For every subset $F \subseteq [n]$, we set $x_F = \prod_{i \in F} x_i$. The Stanley–Reisner ideal of Δ over \mathbb{K} is the ideal I_Δ of R that is generated by those squarefree monomials x_F with $F \notin \Delta$. In other words, $I_\Delta = \langle x_F : F \in \mathcal{N}(\Delta) \rangle$, where $\mathcal{N}(\Delta)$ denotes the set of minimal nonfaces of Δ with respect to inclusion. The Stanley–Reisner ring of Δ over \mathbb{K} , denoted by $\mathbb{K}[\Delta]$, is defined by $\mathbb{K}[\Delta] = R/I_\Delta$.

We recall a notion from commutative algebra. Let $R = \mathbb{K}[x_1, \ldots, x_n]$, and let M be a nonzero finitely generated R-module. We say that M is Cohen-Macaulay if for every prime ideal $\mathfrak{p} \in Spec(R)$, the equality depth $M_{\mathfrak{p}} = \dim M_{\mathfrak{p}}$ holds true. We say that a simplicial complex Δ is Cohen-Macaulay over a field \mathbb{K} if the Stanley-Reisner ring $\mathbb{K}[\Delta]$ of Δ is Cohen-Macaulay. A well-known result of Reisner says that a simplicial complex Δ is Cohen-Macaulay over \mathbb{K} if and only if for every $F \in \Delta$ and for i less than $\dim(\mathrm{lk}_{\Delta}(F))$, it holds that $H_i(\mathrm{lk}_{\Delta}(F); \mathbb{K}) = 0$, where $H_i(\Delta; \mathbb{K})$ denotes the simplicial homology of Δ with coefficients in \mathbb{K} . We say that a simplicial complex Δ is $Supplies Cohen-Macaulay over a field <math>\mathbb{K}$ if every pure skeleton of Δ is Supplies Cohen-Macaulay over \mathbb{K} .

Woodroofe [12] defined the *depth* of Δ over \mathbb{K} as

 $depth_{\mathbb{K}}\Delta = max\{\ell : \Delta^{(\ell)} \text{ is Cohen-Macaulay over } \mathbb{K}\}.$

We note that $\operatorname{depth}_{\mathbb{K}} \Delta$ is at most the minimum facet dimension of Δ , and equality holds if Δ is sequentially Cohen–Macaulay over \mathbb{K} .

We restate Theorem 1.1 using the language of simplicial complexes:

Theorem 1.2. Let t and r be natural numbers with $t \le r$. If $n \ge (t+1)(r-t+1)$ and A is a t-intersecting r-family of faces of a simplex Δ with n vertices, then $|A| \le f_{r-t}(\operatorname{lk}_{\Delta}\sigma)$, where σ is a t-face of Δ .

Definition 1.3. A simplicial complex Δ is (t, r)-EKR if every t-intersecting r-family $\mathcal A$ of faces of Δ satisfies $|\mathcal A| \le \max_{r-t}(\operatorname{lk}_\Delta\sigma)$, where the maximum is taken over all t-faces σ of Δ . Equivalently, Δ is (t, r)-EKR if the set of all r-faces containing some t-face σ has maximal size among all t-intersecting families of r-faces.

As a generalization of Theorem 1.2, Borg conjectured that:

Conjecture 1.4 ([1, Conjecture 2.6]). Let t and r be natural numbers with $t \le r$. Let Δ be a simplicial complex having minimal facet size $k \ge (t+1)(r-t+1)$, and suppose that $S \ne \emptyset$ is a subset of [t,r]. If A is a t-intersecting family of faces of Δ with $A \subseteq \bigcup_{s \in S} \Delta_{(s)}$, then

$$|\mathcal{A}| \leq \max \sum_{s \in S} f_{s-t}(\mathrm{lk}_{\Delta}\sigma),$$
 (*)

where the maximum is taken over all t-faces σ of Δ .

Borg proved Conjecture 1.4 for shifted complexes [1, Theorem 2.7]. Using algebraic shifting, Woodroofe gave a new proof for [1, Theorem 2.7] in the special case t = 1 and $S = \{r\}$ [12, Lemma 3.1]. In this paper we extend Woodroofe's proof and give a new proof for [1, Theorem 2.7] using algebraic shifting (Corollary 2.2). Woodroofe also proved that Conjecture 1.4 is true for sequentially Cohen–Macaulay near-cones in the special case t = 1 and $S = \{r\}$ [12, Corollary 3.4]. We also generalize this result and prove that Conjecture 1.4 is true for every sequentially Cohen–Macaulay i-near-cone in the case t = i (Corollary 3.9).

Download English Version:

https://daneshyari.com/en/article/4646799

Download Persian Version:

https://daneshyari.com/article/4646799

<u>Daneshyari.com</u>