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a b s t r a c t

We consider a game in which a cop searches for a moving robber on a graph using distance
probes, studied by Carragher, Choi, Delcourt, Erickson andWest, which is a slight variation
on one introduced by Seager. Carragher et al. show that for any fixed graph G there is a
winning strategy for the cop on the graph G1/m obtained by replacing each edge of G by
a path of length m, if m is sufficiently large. They conjecture that the cop does not have a
winning strategy on K 1/m

n ifm < n; we show that in fact the copwins if and only ifm > n/2,
for all but a few small values of n. They also show that the robber can avoid capture on any
graph of girth 3, 4 or 5, and ask whether there is any graph of girth 6 on which the cop
wins. We show that there is, but that no such graph can be bipartite; in the process we
give a counterexample for their conjecture that the set of graphs on which the cop wins
is closed under the operation of subdividing edges. We also give a complete answer to the
question of when the cop has a winning strategy on K 1/m

a,b .
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pursuit and evasion games on graphs have been widely studied. Perhaps the most significant variant is the Cops and
Robbers game, an instance of which is a graph G together with a fixed number of cops. The cops take up positions on vertices
of G and a robber then starts on any unoccupied vertex. The cops and the robber take turns: the robber chooses either to
remain at his current vertex or to move to any adjacent vertex, and then the cops simultaneously make moves of the same
form. The game is played with perfect information, so that at any time each of the players knows the location of all others.
The cops win if at any point one of them is at the same location as the robber. The cop number of a graph is the minimum
number of cops required for the cops to have a winning strategy.

Early results on this game include those obtained by Nowakowski and Winkler [8], who categorised the graphs of cop
number 1, and Aigner and Fromme [1], who showed that every planar graph has cop number at most 3. An important open
problem is Meyniel’s conjecture, published by Frankl [5], that the cop number of any n-vertex connected graph is at most
O(

√
n)—this has been shown to be true up to a log(n) factor for random graphs by Bollobás, Kun and Leader [2], following

which Łuczak and Prałat improved the error term [12]. More recently several variations on the game have been analysed by
Clarke and Nowakowski (e.g. [4]).

In this paper we consider the Robber Locating game, introduced in a slightly different form by Seager [9] and further
studied by Carragher et al. [3]. In this game the robber initially occupies a vertex without disclosing which it is to the cop.
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Fig. 1. Cycles of lengths 6 and 7 sharing an edge.

For ease of reading we shall refer to the cop as female and the robber as male. Each round consists of a move for the robber,
in which he either moves to an adjacent vertex or stays where he is, followed by a probe of any vertex by the cop. When the
cop probes a vertex she is told the current distance to the robber. In this setting the cop is not on the graph herself and can
probe vertices without restriction; she wins if at any point she is able to determine the robber’s current location.

Clearly the cop can win eventually with probability 1 on a finite graph against a robber who has no knowledge of her
future moves, simply by probing random vertices until she hits the current location of the robber. This naturally leads to a
different emphasis: we consider the question of whether the cop has a strategy that is guaranteed to win in bounded time,
or equivalently whether she can catch an omniscient robber. We say that a graph is locatable if such a strategy exists and
non-locatable otherwise. Noting that the cop will in general track the set of vertices that the robber could be at, with slight
abuse of notation we allow ourselves to say he is in a set if he is known to be at one of the vertices comprising that set.

In the game as introduced by Seager there was an additional rule that the robber cannotmove to the vertex probed in the
previous round (the no-backtrack condition). Carragher et al. considered the gamewithout this restriction, as dowe. A similar
game phrased in terms of a cat and a mouse, in which the cat wins only if it probes the current location of the mouse and
receives no information otherwise, but the mouse must move at each turn, was recently analysed by one of the authors [7].

Given a graph G and a positive integerm, Carragher et al. [3] wrote G1/m for the graph obtained by replacing each edge of
G by a path of lengthm through new vertices. Each such path is called a thread, and an branch vertex in G1/m is a vertex that
corresponds to a vertex of G. The span of a branch vertex consists of all the vertices at distance less than m from it, which
includes the vertices along the threads leaving that vertex but not the far endpoints of those threads. The main result of [3]
is that G1/m is locatable when m > min{|V (G)|, 1 + max{µ(G) + 2µ(G), ∆(G)}}, where µ(G) is the metric dimension of G.
The metric dimension of a graph G, introduced independently by Slater [11] and by Harary and Melter [6], is the minimum
size of a set S of vertices such that for every x, y ∈ V (G) with x ≠ y there is some z ∈ S with d(x, z) ≠ d(y, z).

Further, Carragher et al. [3] showed that for the complete bipartite graph Ka,b, the inequalitym > max{a, b} is sufficient
for K 1/m

a,b to be locatable. They asked whether this is necessary. We show that in fact m > (min{a, b} − 1) is necessary and
sufficient if min{a, b} > 4, andm > min{a, b} is necessary and sufficient if min{a, b} 6 3, classifying all subdivided complete
bipartite graphs. They also conjectured that their bound is tight for complete graphs, i.e. that K 1/m

n is locatable if and only if
m > n. We show that in fact, except for a few small values of n, the actual threshold is n/2.

They also proved that no graph of girth 3, 4 or 5 is locatable. The cycle C6 is non-locatable, and so they askedwhether there
is a locatable graph of girth 6. We give an example of such a graph but show that no bipartite graph of girth 6 is locatable. In
the process we give a counterexample to their conjecture that if G is locatable then so is any graph obtained by subdividing
a single edge of G. We are grateful to our reviewers who drew our attention to a paper by Seager [10], announced while this
paper was undergoing the review process, in which she independently also proved the result on graphs of girth 6.

2. Graphs of girth 6

In this sectionwe first give an example of a locatable graph of girth 6 together with an explicit strategy for the cop. Define
H to be the graph obtained from the cycle v1v2 · · · v11 by adding the edge v3v9. The graph consists of a 6-cycle and a 7-cycle
with an edge in common. We include an illustration of H in Fig. 1.

Theorem 1. The graph H as defined above is locatable.

Proof. We first give several situations from which the cop can either win or reduce to an earlier situation; we then show
how she can reach a winning situation. Here, when we say ‘the robber is know to be at ’, we refer to the set of vertices that
are possible locations just after the robber’s reply to the cop’s probe, following which the robber makes a move before the
next probe.

(i) If the robber is known to be at v2 or v4, then the cop wins by probing v1.
(ii) If the robber is known to be at v3 or v4, then the cop probes v9, winning or reducing to (i).
(iii) If the robber is known to be at v3 or v8, then the cop probes v7, winning or reducing to (ii).
(iv) If the robber is known to be at v3 or v9, then the cop probes v10, winning or reducing to (i) or (iii).
(v) If the robber is known to be at v4 or v5, then the cop wins by probing v6.
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