

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A note on packing of graphic *n*-tuples^{*}

Jian-Hua Yin

Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, PR China

ARTICLE INFO

Article history:
Received 9 August 2013
Received in revised form 28 July 2015
Accepted 29 July 2015
Available online 28 August 2015

Keywords:
Degree sequence
Graphic n-tuple
Packing of graphic n-tuples

ABSTRACT

A nonnegative integer n-tuple (d_1,\ldots,d_n) (not necessarily monotone) is graphic if there is a simple graph G with the vertex set $\{v_1,\ldots,v_n\}$ in which the degree of v_i is d_i . Graphic n-tuples $(d_1^{(1)},\ldots,d_n^{(1)})$ and $(d_1^{(2)},\ldots,d_n^{(2)})$ pack if there are edge-disjoint n-vertex graphs G_1 and G_2 with the same vertex set $\{v_1,\ldots,v_n\}$ such that $d_{G_1}(v_i)=d_i^{(1)}$ and $d_{G_2}(v_i)=d_i^{(2)}$ for all i. Let $\Delta(\pi)$ and $\delta(\pi)$ denote the largest and smallest entries in n-tuple π respectively. For graphic n-tuples π_1 and π_2 , Busch et al. (2012) proved that if $\Delta(\pi_1+\pi_2)\leq \sqrt{2\delta(\pi_1+\pi_2)n}-(\delta(\pi_1+\pi_2)-1)$ (strict inequality when $\delta(\pi_1+\pi_2)=1$), then π_1 and π_2 pack. As a more direct analogue to the Sauer–Spencer Theorem, Busch et al. conjectured that if $\delta(\pi_1+\pi_2)\geq 1$ and the product of corresponding entries in π_1 and π_2 is always less than $\frac{n}{2}$, then π_1 and π_2 pack. In this paper, we prove that if $\delta(\pi_1)\geq 1$, π_2 is an almost k-regular graphic n-tuple with $k\geq 1$, and the product of corresponding entries in π_1 and π_2 is always less than $\frac{n}{2}$, then π_1 and π_2 pack. This is an interesting variation of Kundu's Theorem. Combining this result with a counterexample to the above conjecture of Busch et al., we present a slight modification of this conjecture as follows: if $\delta(\pi_1)\geq 1$, $\delta(\pi_2)\geq 1$ and the product of corresponding entries in π_1 and π_2 pack.

1. Introduction

A nonnegative integer n-tuple (d_1,\ldots,d_n) (not necessarily monotone) is graphic if there is a simple graph G with vertex set $\{v_1,\ldots,v_n\}$ such that $d_G(v_i)=d_i$. Such a graph G is a realization of (d_1,\ldots,d_n) . The set of all graphic n-tuples is denoted by $\mathbf{F_n}$. The largest and smallest entries in an n-tuple π are denoted by $\Delta(\pi)$ and $\delta(\pi)$, respectively. Two n-vertex graphs G_1 and G_2 pack if they can be expressed as edge-disjoint subgraphs of the complete graph K_n . Let $\pi_1=(d_1^{(1)},\ldots,d_n^{(1)})\in \mathbf{F_n}$ and $\pi_2=(d_1^{(2)},\ldots,d_n^{(2)})\in \mathbf{F_n}$. We say that π_1 and π_2 pack if there exist edge-disjoint graphs G_1 and G_2 with the same vertex set $\{v_1,\ldots,v_n\}$ such that $d_{G_1}(v_i)=d_i^{(1)}$ and $d_{G_2}(v_i)=d_i^{(2)}$ for all i.

Interestingly, the problem of packing graphic *n*-tuples has concrete applications to discrete imaging science. Of particular interest here is *discrete tomography*, which uses low-dimensional projections to reconstruct discrete objects, such as the atomic structure of crystalline lattices and other polyatomic structures.

Numerous papers (cf. [3–5,7,8]) study the k-color Tomography Problem, in which the goal is to color the entries of an $m \times n$ matrix using k colors so that each row and column receives a prescribed number of entries of each color. The colors represent different types of atoms appearing in a crystal, and the number of times an atom appears in a given row or column is generally obtained using high resolution transmission electron microscopes [9,13]. This is precisely the problem of packing the degree sequences of k bipartite graphs with partite sets of size m and n.

[☆] Supported by National Natural Science Foundation of China (No. 11161016, 11561017).

E-mail address: yinjh@ustc.edu.

The condition that $\pi_1 + \pi_2$ is graphic is obviously necessary for π_1 and π_2 to pack, but Busch et al. [1] showed that it is not sufficient. Therefore, it would be interesting to find some sufficient conditions for π_1 and π_2 to pack. In 1978, Sauer and Spencer [12] published the classical theorem that n-vertex graphs G_1 and G_2 pack if $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, where $\Delta(G)$ denotes the maximum vertex degree in G. Busch et al. [1] investigated an analogue of the Sauer–Spencer Theorem for graphic n-tuples and obtained a sufficient condition for π_1 and π_2 to pack.

Theorem 1 (Busch et al. [1]). Let $\pi_1, \pi_2 \in \mathbf{F_n}$. If

$$\Delta(\pi_1 + \pi_2) < \sqrt{2\delta(\pi_1 + \pi_2)n} - (\delta(\pi_1 + \pi_2) - 1),$$

then π_1 and π_2 pack, except that strict inequality is required for the inequality to be sufficient when $\delta(\pi_1 + \pi_2) = 1$.

Busch et al. [1] showed that the bound in Theorem 1 is sharp, that is, they constructed graphic *n*-tuples that do not pack when the maximum entry in the sum is larger by 1.

A nonnegative integer n-tuple $\pi=(d_1,\ldots,d_n)$ is an almost k-regular n-tuple if $\delta(\pi)=k\geq 0$, $\Delta(\pi)\leq n-1$, and $\Delta(\pi)-\delta(\pi)\leq 1$. By Lemma 1 of [2], if $\pi=(d_1,\ldots,d_n)$ is an almost k-regular n-tuple and $\sum_{i=1}^n d_i$ is even, then π is graphic. Kundu's Theorem [10], published in 1973 and proved independently by Lovász [11] at about the same time, characterizes when $\pi\in \mathbf{F_n}$ has a realization containing a spanning subgraph that is almost k-regular. In the language of packing, the result is equivalent to the statement that if $\pi_1\in \mathbf{F_n}$ and each term in π_2 is k or k+1 with $k\geq 0$, then π_1 and π_2 pack if $\pi_1+\pi_2\in \mathbf{F_n}$. As an interesting variation of Kundu's Theorem, we obtain a new sufficient condition for π_1 and π_2 to pack in this paper, as follows.

Theorem 2. Let $\pi_1, \pi_2 \in \mathbf{F_n}$. If $\delta(\pi_1) \geq 1$, π_2 is an almost k-regular graphic n-tuple with $k \geq 1$, and the product of corresponding entries in π_1 and π_2 is always less than $\frac{n}{2}$, then π_1 and π_2 pack.

Busch et al. [1] also conjectured the stronger statement that π_1 and π_2 pack if $\delta(\pi_1 + \pi_2) \geq 1$ and the product of corresponding terms is always less than $\frac{n}{2}$; this would be a more direct analogue of the Sauer–Spencer Theorem.

Conjecture 3 (Busch et al. [1]). Let $\pi_1, \pi_2 \in \mathbf{F_n}$. If $\delta(\pi_1 + \pi_2) \ge 1$ and the product of corresponding entries in π_1 and π_2 is always less than $\frac{\pi}{2}$, then π_1 and π_2 pack.

A counterexample to Conjecture 3 can be found as follows. There will be two constructions, one for even n and one (slightly modified) for odd n. For positive integer ℓ with $\ell \geq 2$, choose positive integer m with $m \geq 2\ell^2 - \ell$ and let n = 2m. Let $\pi_1 = ((m-1)^{m-\ell}, \ell^{m+\ell-2\ell^2}, (\ell-1)^{2\ell^2})$ and $\pi_2 = (1^{2(m-\ell-1)}, 0^{2\ell+2})$, where the symbol x^y stands for y consecutive terms x. From the Erdős–Gallai characterization of graphic n-tuples, it is easy to see that both π_1 and π_2 are graphic. However, $\pi_1 + \pi_2 = (m^{m-\ell}, (\ell+1)^{m+\ell-2\ell^2}, \ell^{2\ell^2-2\ell-2}, (\ell-1)^{2\ell+2})$ is not graphic, by the strict inequality

$$m(m-\ell) > (m-\ell)(m-\ell-1) + (\ell+1)(m+\ell-2\ell^2) + \ell(2\ell^2-2\ell-2) + (\ell-1)(2\ell+2)$$

= $m(m-\ell) - 2$.

Therefore, π_1 and π_2 do not pack. However, π_1 and π_2 satisfy $\delta(\pi_1 + \pi_2) = \ell - 1 \ge 1$, and the product of corresponding entries in π_1 and π_2 is always less than $\frac{n}{2}$.

For positive integer ℓ with $\ell \geq 2$, choose positive integer m with $m \geq 2\ell^2 - 2\ell + 1$ and let n = 2m - 1. Let $\pi_1 = ((m-1)^{m-\ell}, \ell^{m+2\ell-1-2\ell^2}, (\ell-1)^{2\ell^2-\ell})$ and $\pi_2 = (1^{2(m-\ell-1)}, 0^{2\ell+1})$. From the Erdős–Gallai characterization of graphic n-tuples, it is easy to see that both π_1 and π_2 are graphic. However, $\pi_1 + \pi_2 = (m^{m-\ell}, (\ell+1)^{m+2\ell-1-2\ell^2}, \ell^{2\ell^2-3\ell-1}, (\ell-1)^{2\ell+1})$ is not graphic, by the strict inequality

$$m(m-\ell) > (m-\ell)(m-\ell-1) + (\ell+1)(m+2\ell-1-2\ell^2) + \ell(2\ell^2-3\ell-1) + (\ell-1)(2\ell+1)$$

= $m(m-\ell) - 2$.

Therefore, π_1 and π_2 do not pack. However, π_1 and π_2 satisfy $\delta(\pi_1 + \pi_2) = \ell - 1 \ge 1$, and the product of corresponding entries in π_1 and π_2 is always less than $\frac{\pi}{2}$.

The above counterexample to Conjecture 3 shows the sharpness of the requirement that $\delta(\pi_1) \geq 1$ and $\delta(\pi_2) \geq 1$. Therefore, we modify Conjecture 3 slightly as follows.

Conjecture 4. Let $\pi_1, \pi_2 \in \mathbf{F_n}$. If $\delta(\pi_1) \geq 1$, $\delta(\pi_2) \geq 1$ and the product of corresponding entries in π_1 and π_2 is always less than $\frac{\pi}{2}$, then π_1 and π_2 pack.

Theorem 2 proves a special case of Conjecture 4 when π_2 is an almost k-regular graphic n-tuple with $k \ge 1$.

2. Proof of Theorem 2

We will directly apply Kundu's Theorem [10] to prove Theorem 2. Chen [2] gave a short proof of Kundu's Theorem. In the language of packing, Kundu's Theorem is equivalent to the following.

Download English Version:

https://daneshyari.com/en/article/4646806

Download Persian Version:

https://daneshyari.com/article/4646806

<u>Daneshyari.com</u>