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a b s t r a c t

A graph is called integral if all eigenvalues of its adjacency matrix consist entirely of
integers.We prove that for a given nullitymore than 1, there are only finitelymany integral
trees. Integral trees with nullity at most 1 were already characterized by Watanabe and
Brouwer. It is shown that integral trees with nullity 2 and 3 are unique.
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1. Introduction

Throughout this article, all graphs are assumed to be finite andwithout loops or multiple edges. For a graph G, we denote
the vertex set and the edge set of G by V (G) and E(G), respectively. The order of G is defined as |V (G)|. The adjacency matrix
of G, denoted by A(G), is a matrix whose entries indexed by V (G)×V (G) and the (u, v)-entry is 1 if u and v are adjacent and
0 otherwise. The characteristic polynomial of G, denoted by ϕ(G; x), is the characteristic polynomial of A(G). We will drop
the indeterminate x for the simplicity of notation. The zeros of ϕ(G) are called the eigenvalues of G. Note that A(G) is a real
symmetric matrix so that all eigenvalues of G are real numbers. We denote the eigenvalues of G in non-increasing order as
λ1(G) > · · · > λn(G), where n is the order of G. The graph G is said to be integral if all eigenvalues of G are integers. The
nullity of G is defined as the nullity of A(G), which is equal to the multiplicity of 0 as an eigenvalue of G. A large number of
articles on nullity of graphs have been published. We refer the reader to see [9] and references therein for a survey on this
topic.

The notion of integral graphs was first introduced in [10]. A lot of articles deal with integral graphs. We refer the reader
to [1] for a comprehensive but rather old survey on the subject. Here, we are concerned with integral trees. These objects
are extremely rare and hence very difficult to find. For a long time, it was an open question whether there exist integral
trees with arbitrarily large diameter [13]. Recently, this question was affirmatively answered in [4,8], where the authors
constructed integral trees for any diameter. It is well known that the tree on two vertices is the only integral tree with
nullity zero [12]. Thereafter, Brouwer proved that any integral tree with nullity 1 is a subdivision of a star graph where the
order of the star graph is a perfect square [2]. The latter result hasmotivated us to investigate integral trees from the ‘nullity’
point of view.

In this article, we prove that with a fixed nullity more than 1, there are only finitely many integral trees. We also
characterize integral trees with nullity 2 and 3 showing that there is a unique integral tree with nullity 2 as well as a unique
integral tree with nullity 3.
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2. Reduced trees

In this section we introduce ‘reduced trees’ and derive some properties of their spectrum. We shall use these properties
in the next section to prove our finiteness result.

As usual, the degree of a vertex v of a graph G is the number of edges of G incident on v. A vertex of degree 1 is called
pendant and a vertex adjacent to a pendant vertex is said to be quasi-pendant. Write Pn for the path graph of order n. For a
vertex v of a graph G, we say that there are k pendant P2 at v if removing v from G increases the number of P2 components
by k. A graph G is called reduced if there exists at most one pendant P2 at each vertex of G.

We denote the multiplicity of λ as an eigenvalue of a graph G by mult(G; λ). We also denote the number of eigenvalues
of G in the interval (−1, 1) bym(G). It is worth to mention that the eigenvalue spectrum of any bipartite graph is symmetric
with respect to the origin [3, p. 6].

The following folklore fact, which is stated in [7, p. 49] as an exercise, shows that a reduced graph obtained from a graph
G by removing some pendant P2 has the same nullity as G.

Lemma 1. Let G be a graph and v ∈ V (G) be a pendant vertex. If u is the neighbor of v, then the nullities of G and G − {u, v}

are the same.

The following result is immediately deduced from Lemma 1 and is proved in [6, Theorem 2].

Corollary 2. The size of the maximum matching in a tree of order n with nullity h is n−h
2 .

The first and second statements of the following theorem are respectively obtained from the Cauchy interlacing theorem
for symmetric matrices [3, Corollary 2.5.2] and the Perron–Frobenius theory of nonnegative matrices [3, Theorem 2.2.1].

Theorem 3. If G is a graph of order n and H is an induced subgraph of G of order m, then λn−m+i(G) 6 λi(H) 6 λi(G) for
i = 1, . . . ,m. Moreover, if G is a connected graph and G ≠ H, then λ1(H) < λ1(G).

As a consequence of Theorem 3, one readily deduces that λ1(G) > λ2(G) for any connected graph G of order at least 2.

Lemma 4. Let G be a graph and v ∈ V (G) be a pendant vertex. If u is the neighbor of v, then m(G − {u, v}) 6 m(G).

Proof. Note that m(G − {u, v}) = m(G − u) − 1. Applying Theorem 3 for G and G − u, we see that m(G − u) − 1 6 m(G),
implying the result. �

The following lemma generalizes a result in [12].

Lemma 5. The tree P2 is the only tree with no eigenvalue in (−1, 1).

Proof. We havem(P1) = 1. By induction on n, we will show for any tree T of order n > 3 thatm(T ) > 1. Let v be a pendant
vertex in a tree T and v′ be its neighbor. If Tv = T − {v, v′

} has a connected component other than P2, then it follows
from Lemma 4, m(P1) = 1, and the induction hypothesis that m(T ) > m(Tv) > 1, as desired. Otherwise, all the connected
components of Tv must be P2. Indeed, we may assume that this property holds for each pendant vertex v of T . This forces
that T = P4. Butm(P4) = 2 by [5, Table 2], completing the proof. �

Theorem 6. For any nonnegative integer k, there are finitely many reduced trees with exactly k eigenvalues in (−1, 1).

Proof. We prove the assertion by induction on k. By Lemma 5, we may assume that k > 1. Let T be a reduced tree with
m(T ) = k. First suppose that there exists v ∈ V (T ) such that three of the connected components T1, . . . , Td of T − v are not
P2. From Theorem 3, m(T − v) 6 m(T ) + 1. Since T is reduced, at most one of T1, . . . , Td is P2. Hence, Lemma 5 yields that
d−1 6

d
i=1 m(Ti) 6 k+1 andm(Ti)+2 6

d
i=1 m(Ti) 6 k+1 for i = 1, . . . , d. It follows that d 6 k+2 andm(Ti) 6 k−1

for i = 1, . . . , d. Note that if some Ti is not reduced, then it has exactly one vertex with more than one pendant P2 and
such a vertex has exactly two pendant P2. By the induction hypothesis, the number of reduced trees F withm(F) 6 k − 1 is
finite and thus there are only finitely many ways of choosing T1, . . . , Td. Since d 6 k + 2, the result follows. Now suppose
otherwise. This means that any vertex of T is of degree at most 3 and all vertices of degree 3 of T have a pendant P2. Hence,
T is obtained from a path graph Pt by attaching one pendant P2 at some vertices of degree 2 in Pt . Moreover, it follows from
Lemma 4 that m(Pt) 6 m(T ). We know from [3, p. 9] that λi(Pt) = 2 cos πℓ

t+1 for ℓ = 1, . . . , t . Therefore, m(Pt) > t−2
3 and

so t 6 3k + 2. This completes the proof. �

For later use, we need the following refinement of Lemma 4.

Lemma 7. Let T be a tree with at least one pendant P2 at v ∈ V (T ). Then increasing the number of pendant P2 at v by one,
leaves the number of eigenvalues in (−1, 1) unchanged and increases the multiplicity of 1 by one.
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