Odd complete minors in even embeddings on surfaces

Gašper Fijavž ${ }^{\text {a,* }}$, Atsuhiro Nakamoto ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
${ }^{\mathrm{b}}$ Graduate School of Environment and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

ARTICLE INFO

Article history:

Received 14 October 2014
Received in revised form 8 July 2015
Accepted 27 July 2015
Available online 31 August 2015

Keywords:

Graph embedding
Even embedding
Graph minor
Odd minor

Abstract

In this paper, we study the odd K_{m}-minor problem in even embeddings on surfaces. We first establish a general theory for even embeddings with odd K_{m}-minors. Given an integer m we show that for every surface F^{2} of sufficiently high genus there exists a constant $N=N\left(F^{2}\right)$ so that every non-bipartite even embedding on F^{2} with representativity at least N contains an odd K_{m} as a minor. In the second part we prove that every 19 -representative non-bipartite even embedding in an arbitrary orientable surface of genus ≥ 1 has an odd K_{5}-minor.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A contraction of an edge e in a graph G is the operation which removes the edge e itself and identifies the two endvertices of e. We say that a graph H is a minor of G if there exists a sequence of graphs $G=G_{1}, G_{2}, \ldots, G_{\ell}=H$ such that for $i \in\{1, \ldots, \ell-1\}$ the graph G_{i+1} is obtained from G_{i} by either an edge contraction, an edge deletion or a removal of an isolated vertex. (If both G and H are connected, then the third operation is not needed.) In this case, we say that G has H as a minor or an H-minor. A k-cycle C is a cycle of length $|C|=k$; it is an odd cycle if k is odd and an even cycle if k is even. We denote the complete graph on m vertices with K_{m}.

The existence problem of a K_{m}-minor in a graph is an important problem, because it is (among others) related to a well-known Hadwiger Conjecture [5], which states that every graph with a K_{m+1}-minor is m-colorable. For $m \leq 4$, the conjecture trivially holds, and the case with $m=4$ is equivalent to the Four Color Theorem through the Kuratowski-Wagner theorem [26] for a characterization of K_{5}-minor-free structures. The case with $m=5$ has been solved in [24], but the case when $m \geq 6$ is still open.

A surface is a compact 2-dimensional manifold without boundary. By the classification of surfaces, every surface is homeomorphic to an orientable surface of genus $g \geq 0$, denoted by \mathbb{S}_{g}, or a nonorientable surface of genus $k \geq 1$, denoted by \mathbb{N}_{k}. For a surface F^{2}, let $g\left(F^{2}\right)$ denote the Euler genus of F^{2}, that is, $g\left(F^{2}\right)=2-\chi\left(F^{2}\right)$, where $\chi\left(F^{2}\right)$ is the Euler characteristic of F^{2}. Let G be a map on a non-spherical surface F^{2}, that is, a fixed embedding of a graph with each face homeomorphic to an open 2-cell. For two maps G and H on the same surface F^{2}, we say that H is a surface minor of G if H is obtained from G by repeatedly contracting and/or deleting edges. (This definition is similar to the minor relation of two graphs, but in the surface minor relation, we note that in the process to obtain H from G, each of the graph operations is applied to maps on the surface without re-embedding graphs on the surface.) A simple closed curve λ is contractible on F^{2} if λ can be transformed into a

[^0]single point by a continuous transformation, and otherwise, λ is essential (also noncontractible). These definitions extend to cycles and also closed walks of embedded graphs. The representativity of G (also called face-width of G), denoted by $r(G)$, is the minimum number of intersecting points of G and λ on F^{2}, where λ ranges over all essential simple closed curves on F^{2}. We say G is k-representative if G has representativity at least k. It is easy to see that if a map H is a surface minor of G, then $r(H) \leq r(G)$.

The problem of finding K_{m}-minors has also been considered on surfaces. (However, we have to note that for any surface F^{2}, the number m for which K_{m} embeds in F^{2} is bounded, where m is known as a Heawood number.) Fijavž and Mohar [3] proved that every 5-connected 3-representative map on the projective plane has a K_{6}-minor, and Mukae et al. and others characterized triangulations on low-genus surfaces with K_{6}-minors [11,14,15,18]. We explicitly state a theorem of Krakovski and Mohar.

Theorem 1 (Krakovski and Mohar [12]). There exists an absolute constant N such that every N-representative graph on a nonspherical surface has a K_{6}-minor.

They proved that for every non-spherical surface $N=6$ suffices, and that 4 is the sufficient bound in the projectiveplanar case. Moreover, they claim it suffices to consider the number of intersecting points of graphs and only nonseparating simple closed curve on the surfaces, though the representativity should be defined for all essential simple closed curves. Note that Theorem 1 contrasts to the well known and powerful theorem of Robertson and Seymour:

Theorem 2 (Robertson and Seymour [22]). Let H be a map on a non-spherical surface F^{2}. Then there exists an integer $N=$ $N\left(F^{2}, H\right)$ such that every N-representative map on F^{2} has an H-minor, up to homeomorphism.

Clearly, if F^{2} admits an embedding of G and does not admit an embedded H, then also G does not contain an H-minor. If, on the other hand, G embeds in F^{2} and so does H, then Theorem 2 implies that, provided the representativity of (an embedding of) G in F^{2} is large enough (with respect to F^{2}), then H is a minor of G.

Theorem 1, on the other hand, yields an absolute constant. One has to note that K_{6} embeds in every non-spherical surface.
We shall consider the odd minor problem, a natural refinement of the usual minor problem, see, for example [4,10].
Let H be a graph with $V(H)=\left\{v_{1}, \ldots, v_{m}\right\}$. We can say that a graph G has an H-minor if G has m pairwise disjoint sub-trees T_{1}, \ldots, T_{m} such that if $v_{i} v_{j} \in E(H)$, then G has an edge $e_{i j}$ joining T_{i} and T_{j}. (This is equivalent to the minor relation given in the first paragraph.) We say that H is an odd minor of G if there is a 2-color-assignment $c: V(G) \rightarrow\{1,2\}$ such that $\left.c\right|_{V\left(T_{i}\right)}: V\left(T_{i}\right) \rightarrow\{1,2\}$ is a proper coloring for each i, and that for each $e_{i j}=x y, c(x)=c(y)$.

It is easy to see that
(P1) if G has an odd H-minor and H has a cycle C, then we can find a unique cycle D in the subgraph

$$
\left(\bigcup_{i=1}^{m} T_{i}\right) \cup\left\{e_{i j}: v_{i} v_{j} \in E(H)\right\}
$$

of G such that D contracts to C and that $|D| \equiv|C|(\bmod 2)$,
since D is a cycle of G containing exactly $|C|$ monochromatic edges in the 2-color-assignment of G. We also call D the model of C.

It is also not difficult to argue that the odd-minor relation is transitive, as models of cycles do not change their parities. If G_{1} is an odd minor of G_{2}, and the latter is an odd minor of G_{3}, then G_{1} is also an odd minor of G_{3}.

The existence of an odd K_{m}-minor in G gives the information about the parity of cycle lengths in G. By the parity argument no bipartite graph has an odd K_{m}-minor for any $m \geq 3$, since K_{3} itself contains an odd cycle. In this paper, we always suppose that $H=K_{m}$ with $m \geq 3$, and consider the existence problem of an odd K_{m}-minor.

Let G be an even embedding on a surface F^{2}, that is, a map of a simple graph on F^{2} with each face bounded by an even cycle. Then G is a 2-connected map on F^{2}, and if F^{2} is non-spherical, then G is also 2-representative. In particular, G is a quadrangulation if each face is bounded by a 4-cycle. The following are well-known fundamental properties of cycle lengths of an even embedding G on F^{2} :
(E1) If F^{2} is the sphere, then G must be bipartite. On the other hand, every non-spherical surface admits non-bipartite even embeddings.
(E2) If C is a contractible closed walk, then C has even length.
(E3) If C and C^{\prime} are closed walks of G freely homotopic on F^{2}, then $|C| \equiv\left|C^{\prime}\right|(\bmod 2)$.
These special properties of even embeddings makes our problem interesting, and enable us to establish a theory for the existence of odd K_{m}-minors in graphs on surfaces.

Definition 3. For the sphere \mathbb{S}_{0}, the Klein bottle \mathbb{N}_{2}, and the double torus \mathbb{S}_{2}, let

$$
m\left(\mathbb{S}_{0}\right)=2, \quad m\left(\mathbb{N}_{2}\right)=4, \quad m\left(\mathbb{S}_{2}\right)=5
$$

https://daneshyari.com/en/article/4646809

Download Persian Version:

https://daneshyari.com/article/4646809

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gasper.fijavz@fri.uni-lj.si (G. Fijavž), nakamoto@ynu.ac.jp (A. Nakamoto).
 http://dx.doi.org/10.1016/j.disc.2015.07.015
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

