Note

A note on the no-three-in-line problem on a torus

Aleksander Misiak ${ }^{\text {a }}$, Zofia Stȩpień ${ }^{\text {a,* }}$, Alicja Szymaszkiewicza ${ }^{\text {a }}$, Lucjan Szymaszkiewicz ${ }^{\text {b }}$, Maciej Zwierzchowski ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, West Pomeranian University of Technology, al. Piastów 48/49, 70-310 Szczecin, Poland
${ }^{\mathrm{b}}$ Institute of Mathematics, Szczecin University, Wielkopolska 15, 70-451 Szczecin, Poland

ARTICLE INFO

Article history:

Received 25 September 2014
Received in revised form 5 August 2015
Accepted 8 August 2015
Available online 4 September 2015

Keywords:

Discrete torus
No-three-in-line problem
Chinese Remainder Theorem

Abstract

In this paper we show that at most $2 \operatorname{gcd}(m, n)$ points can be placed with no three in a line on an $m \times n$ discrete torus. In the situation when $\operatorname{gcd}(m, n)$ is a prime, we completely solve the problem. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

The no-three-in-line-problem [2] asks for the maximum number of points that can be placed in the $n \times n$ grid with no three points collinear. This question has been widely studied, but is still not resolved.

The obvious upper bound is $2 n$ since one can put at most two points in each row. This bound is attained for many small cases, for details see [4] and [5]. In [7] the authors give a probabilistic argument to support the conjecture that for a large n this limit is unattainable.

As a lower bound, Erdös' construction (see [3]) shows that for p prime one can select p points with no three collinear. In [8] it is shown, that for p prime one can select $3(p-1)$ points from a $2 p \times 2 p$ grid with no three collinear.

In the literature we can find some extensions of the no-three-in-line problem (see [6,9]). This paper is generalization of [6], where authors analyze the no-three-in-line-problem on the discrete torus. This modified problem is still interesting.

Let m and n be positive integers greater than 1 . By a discrete torus $T_{m \times n}$ we mean $\{0,1, \ldots, m-1\} \times\{0,1, \ldots, n-1\}$.
Four integers a, b, u, v with $\operatorname{gcd}(u, v)=1$ correspond to the line $\{(a+u k, b+v k): k \in \mathbb{Z}\}$ on $\mathbb{Z} \times \mathbb{Z}$. The condition $\operatorname{gcd}(u, v)=1$ ensures that each pair P, Q of distinct points in $\mathbb{Z} \times \mathbb{Z}$ belongs to exactly one line. For instance, the points $O=(0,0), P=(2,2)$ belong to the line $\{(k, k): k \in \mathbb{Z}\}$.

We define lines on $T_{m \times n}$ to be images of lines in the $\mathbb{Z} \times \mathbb{Z}$ under the projection $\pi_{m, n}: \mathbb{Z} \times \mathbb{Z} \rightarrow T_{m \times n}$ defined as follows

$$
\pi_{m, n}(a, b):=(a \bmod m, b \bmod n)
$$

By $x \bmod y$ we mean the smallest non-negative remainder when x is divided by y.
We say that a set $X \subset T_{m \times n}$ satisfies the no-three-in-line condition if there are no three collinear points in X. Let $\tau\left(T_{m \times n}\right)$ denote the size of the largest set X satisfying the no-three-in-line condition.

[^0]In our paper we will prove the following theorems.
Theorem 1.1. We have

$$
\tau\left(T_{m \times n}\right) \leq 2 \operatorname{gcd}(m, n) .
$$

Theorem 1.2. We have

(1) $\operatorname{For} \operatorname{gcd}(m, n)=1, \tau\left(T_{m \times n}\right)=2$.
(2) For $\operatorname{gcd}(m, n)=2, \tau\left(T_{m \times n}\right)=4$.
(3) Let $\operatorname{gcd}(m, n)=p$ be an odd prime.
(a) If $\operatorname{gcd}(p m, n)=p^{2}$ or $\operatorname{gcd}(m, p n)=p^{2}$, then $\tau\left(T_{m \times n}\right)=2 p$.
(b) If $\operatorname{gcd}(p m, n)=p$ and $\operatorname{gcd}(m, p n)=p$, then $\tau\left(T_{m \times n}\right)=p+1$.

Theorem 1.2(1) was proved in [6] by some algebraic argument. Theorem 1.2(2) is a generalized version of Proposition 2.1 from [6]. Similarly, Theorem 1.2(3a) and Theorem 1.2(3b) are generalizations of Theorem 2.7 and Theorem 2.9 from [6], respectively.

2. Proofs of Theorem 1.1 and Theorem 1.2(1)

One of the main tools used in this paper is the Chinese Remainder Theorem.
Theorem 2.1 (Chinese Remainder Theorem). Two simultaneous congruences

$$
\begin{aligned}
& x \equiv a \quad(\bmod m) \\
& x \equiv b \quad(\bmod n)
\end{aligned}
$$

are solvable if and only if $a \equiv b(\bmod \operatorname{gcd}(m, n))$. Moreover, the solution is unique modulo $\operatorname{lcm}(m, n)$.
Let us define the family $\mathcal{L}=\left\{L_{s}: s \in\{0,1, \ldots, \operatorname{gcd}(m, n)-1\}\right\}$ of lines on $T_{m \times n}$, where

$$
L_{s}=\left\{\pi_{m, n}(k, k-s) \in T_{m \times n}: k \in \mathbb{Z}\right\} .
$$

Lemma 2.2 (See [10]). Let $a=\left(a_{x}, a_{y}\right) \in T_{m \times n}$ and $d=\left(a_{x}-a_{y}\right) \bmod \operatorname{gcd}(m, n)$. Then $a \in L_{d}$. Moreover, we have $L_{s_{1}} \cap L_{s_{2}}=\emptyset$ for $s_{1} \neq s_{2}$ and $s_{1}, s_{2} \in\{0,1, \ldots, \operatorname{gcd}(m, n)-1\}$.

Proof. By Theorem 2.1 there exists $k \in \mathbb{Z}$ such that

$$
\begin{aligned}
& k \equiv a_{x} \\
& k \equiv a_{y}+d \quad(\bmod m) \\
& (\bmod n)
\end{aligned}
$$

Consequently, $\left(a_{x}, a_{y}\right)=\pi_{m, n}(k, k-d) \in L_{d}$. Suppose that $L_{s_{1}} \cap L_{s_{2}} \neq \emptyset$. This means that there are $k_{1}, k_{2} \in \mathbb{Z}$ such that $\pi_{m, n}\left(k_{1}, k_{1}-s_{1}\right)=\pi_{m, n}\left(k_{2}, k_{2}-s_{2}\right)$. In other words $k_{1}-k_{2}$ is the solution of the following system

$$
\begin{aligned}
& k_{1}-k_{2} \equiv 0 \quad(\bmod m) \\
& k_{1}-k_{2} \equiv s_{1}-s_{2} \quad(\bmod n)
\end{aligned}
$$

By Theorem 2.1 again, we see that $s_{1}-s_{2} \equiv 0(\bmod \operatorname{gcd}(m, n))$. Hence $L_{s_{1}} \cap L_{s_{2}}=\emptyset$ for $s_{1} \neq s_{2}$ and $s_{1}, s_{2} \in$ $\{0,1, \ldots, \operatorname{gcd}(m, n)-1\}$.

Proof of Theorem 1.1. Let $X \subset T_{m \times n}$ satisfy the no-three-in-line condition. By Lemma 2.2 for every $a \in X$ there exists $L \in \mathcal{L}$ such that $a \in L$. Consequently, $\tau\left(T_{m \times n}\right) \leq 2 \cdot|\mathcal{L}|=2 \cdot \operatorname{gcd}(m, n)$.

Proof of Theorem 1.2(1). Obviously it is always true that $\tau\left(T_{m \times n}\right) \geq 2$. By Theorem 1.1 we get the statement.

3. Proofs of Theorem 1.2(2) and Theorem 1.2(3a)

Let $X=\left(x_{1}, x_{2}\right) \in \mathbb{Z} \times \mathbb{Z}, Y=\left(y_{1}, y_{2}\right) \in \mathbb{Z} \times \mathbb{Z}, Z=\left(z_{1}, z_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$. Denote by $D(X, Y, Z)$ the following determinant

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right| .
$$

Recall the determinant criterion for checking whether points are in a line:
Lemma 3.1. Three points $X, Y, Z \in \mathbb{Z} \times \mathbb{Z}$ are in a line if and only if $D(X, Y, Z)=0$.

https://daneshyari.com/en/article/4646813

Download Persian Version:

https://daneshyari.com/article/4646813

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Aleksander.Misiak@zut.edu.pl (A. Misiak), stepien@zut.edu.pl (Z. Stẹpień), alicjasz@zut.edu.pl (A. Szymaszkiewicz), lucjansz@wmf.univ.szczecin.pl (L. Szymaszkiewicz), mzwierz@zut.edu.pl (M. Zwierzchowski).

