Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

m-ary partitions with no gaps: A characterization modulo *m*

George E. Andrews^a, Aviezri S. Fraenkel^b, James A. Sellers^{a,*}

^a Department of Mathematics, Penn State University, University Park, PA 16802, USA

^b Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel

ARTICLE INFO

Article history: Received 21 April 2015 Received in revised form 16 August 2015 Accepted 17 August 2015 Available online 8 September 2015

Keywords: Partition Congruence Generating function

ABSTRACT

In a recent work, the authors provided the first-ever characterization of the values $b_m(n)$ modulo m where $b_m(n)$ is the number of (unrestricted) m-ary partitions of the integer n and $m \ge 2$ is a fixed integer. That characterization proved to be quite elegant and relied only on the base m representation of n. Since then, the authors have been motivated to consider a specific restricted m-ary partition function, namely $c_m(n)$, the number of m-ary partitions of n where there are no "gaps" in the parts. (That is to say, if m^i is a part in a partition counted by $c_m(n)$, and i is a positive integer, then m^{i-1} must also be a part in the partition.) Using tools similar to those utilized in the aforementioned work on $b_m(n)$, we prove the first-ever characterization of $c_m(n)$ modulo m. As with the work related to $b_m(n)$ modulo m, this characterization of $c_m(n)$ modulo m is also based solely on the base m representation of n.

1. Introduction

In this note, we will focus our attention on congruence properties for the partition functions which enumerate restricted integer partitions known as *m*-ary partitions. These are partitions of an integer *n* wherein each part is a power of a fixed integer $m \ge 2$. Throughout this note, we will let $b_m(n)$ denote the number of *m*-ary partitions of *n*.

As an example, note that there are five 3-ary partitions of n = 9:

9, 3+3+3, 3+3+1+1+1, 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1.

Thus, $b_3(9) = 5$.

* Corresponding author.

In the late 1960s, Churchhouse [5,6] initiated the study of congruence properties of binary partitions (*m*-ary partitions with m = 2). Within months, other mathematicians proved Churchhouse's conjectures and proved natural extensions of his results. These included Rødseth [9] who extended Churchhouse's results to include the functions $b_p(n)$ where p is any prime as well as Andrews [1] and Gupta [7,8] who proved that corresponding results also held for $b_m(n)$ where m could be any integer greater than 1. As part of an infinite family of results, these authors proved that, for any $m \ge 2$ and any nonnegative integer $n, b_m(m(mn - 1)) \equiv 0 \pmod{m}$.

Quite recently, the authors [3] provided the following mod *m* characterization of $b_m(mn)$ relying solely on the base *m* representation of *n*:

E-mail addresses: gea1@psu.edu (G.E. Andrews), aviezri.fraenkel@weizmann.ac.il (A.S. Fraenkel), sellersj@psu.edu (J.A. Sellers).

http://dx.doi.org/10.1016/j.disc.2015.08.016 0012-365X/© 2015 Elsevier B.V. All rights reserved.

Note

CrossMark

Theorem 1.1. If $m \ge 2$ is a fixed integer and

$$n = \alpha_0 + \alpha_1 m + \dots + \alpha_i m^i$$

is the base m representation of n (so that $0 \le \alpha_i \le m - 1$ for each i), then

$$b_m(mn) \equiv \prod_{i=0}^j (\alpha_i + 1) \pmod{m}$$

In this note, we provide a similar mod *m* result for the values $c_m(mn)$, where $c_m(n)$ is the number of *m*-ary partitions of *n* with "no gaps" in the parts. More specifically, $c_m(n)$ counts the number of partitions of *n* into powers of *m* such that, if m^i is a part in a partition counted by $c_m(n)$, and *i* is a positive integer, then m^{i-1} must also be a part in the partition. For example, there are six such partitions counted by $c_3(15)$:

Note, in particular, that 9 + 1 + 1 + 1 + 1 + 1 + 1 does not appear in the above list because it does not contain the part 3, and 3 + 3 + 3 + 3 + 3 + 3 is missing from the list because it does not contain the part 1.

This family of functions $c_m(n)$ is motivated by a recent work of Bessenrodt, Olsson, and Sellers [4] in which the function $c_2(n)$ plays a critical role.

2. The main result

The following theorem provides a complete characterization of $c_m(mn)$ modulo *m*:

Theorem 2.1. Let $m \ge 2$ be a fixed integer and let

$$n=\sum_{i=j}^{\infty}\alpha_i m^i$$

be the base m representation of n where $1 \le \alpha_i < m$ and $0 \le \alpha_i < m$ for i > j.

(1) If j is even, then

$$c_m(mn) \equiv \alpha_j + (\alpha_j - 1) \sum_{i=j+1}^{\infty} \alpha_{j+1} \dots \alpha_i \pmod{m}$$

(2) If j is odd, then

$$c_m(mn) \equiv 1 - \alpha_j - (\alpha_j - 1) \sum_{i=j+1}^{\infty} \alpha_{j+1} \dots \alpha_i \pmod{m}.$$

Remark 2.2. Note that Lemma 2.7 (which appears below) implies that Theorem 2.1 tells us the congruence class of $c_m(n)$ modulo *m* for all *n*, not just those values of *n* which are divisible by *m*.

In order to prove Theorem 2.1, we need a few elementary tools. We describe these tools here. First, it is important to note the generating function for $c_m(n)$.

Lemma 2.3.

$$C_m(q) := 1 + \sum_{n=0}^{\infty} \frac{q^{1+m+m^2+\dots+m^n}}{(1-q)(1-q^m)\dots(1-q^{m^n})}.$$

Proof. The proof follows from a standard argument from [2, Chapter 1]. ■

Next, we wish to find the generating function for $c_m(mn)$.

Lemma 2.4.

$$\sum_{n=0}^{\infty} c_m(mn)q^n = 1 + \frac{q}{1-q}C_m(q)$$
(1)

Download English Version:

https://daneshyari.com/en/article/4646819

Download Persian Version:

https://daneshyari.com/article/4646819

Daneshyari.com