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m > 2is afixed integer. That characterization proved to be quite elegant and relied only on
the base m representation of n. Since then, the authors have been motivated to consider a
specific restricted m-ary partition function, namely c,,(n), the number of m-ary partitions
of n where there are no “gaps” in the parts. (That is to say, if m' is a part in a partition counted

K ds: .. i i . o .

Pg_/tiwggns by cm(n), and i is a positive integer, then m'~! must also be a part in the partition.) Using
Congruence tools similar to those utilized in the aforementioned work on b,,(n), we prove the first-
Generating function ever characterization of ¢, (n) modulo m. As with the work related to b, (n) modulo m, this

characterization of ¢,;(n) modulo m is also based solely on the base m representation of n.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note, we will focus our attention on congruence properties for the partition functions which enumerate restricted
integer partitions known as m-ary partitions. These are partitions of an integer n wherein each part is a power of a fixed
integer m > 2. Throughout this note, we will let b,;,(n) denote the number of m-ary partitions of n.

As an example, note that there are five 3-ary partitions of n = 9:

9, 3+3+3, 3+3+1+1+1,
3+1+1+1+14+1+1, 1+1+1+1+1+1+1+1+1.

Thus, b3(9) = 5.

In the late 1960s, Churchhouse [5,6] initiated the study of congruence properties of binary partitions (m-ary partitions
with m = 2). Within months, other mathematicians proved Churchhouse’s conjectures and proved natural extensions of his
results. These included Redseth [9] who extended Churchhouse’s results to include the functions b, (n) where p is any prime
as well as Andrews [1] and Gupta [7,8] who proved that corresponding results also held for b;;;(n) where m could be any
integer greater than 1. As part of an infinite family of results, these authors proved that, for any m > 2 and any nonnegative
integer n, by,(m(mn — 1)) = 0 (mod m).

Quite recently, the authors [3] provided the following mod m characterization of b,,(mn) relying solely on the base m
representation of n:
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Theorem 1.1. If m > 2 is a fixed integer and

n=oap+om+---+om

is the base m representation of n (so that 0 < o; < m — 1 for each i), then
J
bu(mn) = [ J(i +1)  (mod m).
i=0

In this note, we provide a similar mod m result for the values c,,(mn), where c,,(n) is the number of m-ary partitions of n
with “no gaps” in the parts. More specifically, ¢, () counts the number of partitions of n into powers of m such that, if m' is
a part in a partition counted by c,, (1), and i is a positive integer, then m'~! must also be a part in the partition. For example,
there are six such partitions counted by c3(15):

94+3+1+1+1, 34+34+3+34+14+1+1, 34+3+3+14+14+14+14+1+1,
3434+14+14+14+14+14+14+14+141, 3414+1+14+14+14+14+14+14+1+1+1+1,
141+14+14+14+14+14+14+14+14+14+14+14+1+1.

Note, in particular, that9+ 14+ 1+ 14 1+ 1+ 1 does not appear in the above list because it does not contain the part 3,
and 3 + 3 + 3 4+ 3 + 3 is missing from the list because it does not contain the part 1.

This family of functions ¢, (n) is motivated by a recent work of Bessenrodt, Olsson, and Sellers [4] in which the function
c,(n) plays a critical role.

2. The main result
The following theorem provides a complete characterization of ¢, (mn) modulo m:

Theorem 2.1. Let m > 2 be a fixed integer and let

o0
n= E a;m'
P

be the base m representation of n where 1 < oj < mand 0 < o; < mfori > j.
(1) If jis even, then
o0
Ccm(mn) = o + (oj — 1) Z Qjt1...04 (mod m).
i=j+1
(2) If jis odd, then

o0
cm(mn) =1—o; — (oj — 1) Z Qjt1...0 (mod m).
i=j+1

Remark 2.2. Note that Lemma 2.7 (which appears below) implies that Theorem 2.1 tells us the congruence class of ¢, (1)

modulo m for all n, not just those values of n which are divisible by m.

In order to prove Theorem 2.1, we need a few elementary tools. We describe these tools here.
First, it is important to note the generating function for c,,(n).

Lemma 2.3.

q1+m+m2+<--+m”

A= —gm)...(1—gm™)’

Cu(@) =1+
n=0

Proof. The proof follows from a standard argument from [2, Chapter 1]. ®

Next, we wish to find the generating function for ¢, (mn).

Lemma 2.4.

> Gn(mmg" =1+ 1 Ca(@) (1)
n=0 q
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