Note

m-ary partitions with no gaps: A characterization modulo m

George E. Andrews ${ }^{\text {a }}$, Aviezri S. Fraenkel ${ }^{\text {b }}$, James A. Sellers ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Penn State University, University Park, PA 16802, USA
${ }^{\mathrm{b}}$ Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel

A R TICLE INFO

Article history:

Received 21 April 2015
Received in revised form 16 August 2015
Accepted 17 August 2015
Available online 8 September 2015

Keywords:

Partition
Congruence
Generating function

Abstract

In a recent work, the authors provided the first-ever characterization of the values $b_{m}(n)$ modulo m where $b_{m}(n)$ is the number of (unrestricted) m-ary partitions of the integer n and $m \geq 2$ is a fixed integer. That characterization proved to be quite elegant and relied only on the base m representation of n. Since then, the authors have been motivated to consider a specific restricted m-ary partition function, namely $c_{m}(n)$, the number of m-ary partitions of n where there are no "gaps" in the parts. (That is to say, if m^{i} is a part in a partition counted by $c_{m}(n)$, and i is a positive integer, then m^{i-1} must also be a part in the partition.) Using tools similar to those utilized in the aforementioned work on $b_{m}(n)$, we prove the firstever characterization of $c_{m}(n)$ modulo m. As with the work related to $b_{m}(n)$ modulo m, this characterization of $c_{m}(n)$ modulo m is also based solely on the base m representation of n. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note, we will focus our attention on congruence properties for the partition functions which enumerate restricted integer partitions known as m-ary partitions. These are partitions of an integer n wherein each part is a power of a fixed integer $m \geq 2$. Throughout this note, we will let $b_{m}(n)$ denote the number of m-ary partitions of n.

As an example, note that there are five 3-ary partitions of $n=9$:
$9, \quad 3+3+3, \quad 3+3+1+1+1$,

$$
3+1+1+1+1+1+1, \quad 1+1+1+1+1+1+1+1+1
$$

Thus, $b_{3}(9)=5$.
In the late 1960s, Churchhouse [5,6] initiated the study of congruence properties of binary partitions (m-ary partitions with $m=2$). Within months, other mathematicians proved Churchhouse's conjectures and proved natural extensions of his results. These included Rødseth [9] who extended Churchhouse's results to include the functions $b_{p}(n)$ where p is any prime as well as Andrews [1] and Gupta [7,8] who proved that corresponding results also held for $b_{m}(n)$ where m could be any integer greater than 1 . As part of an infinite family of results, these authors proved that, for any $m \geq 2$ and any nonnegative integer $n, b_{m}(m(m n-1)) \equiv 0(\bmod m)$.

Quite recently, the authors [3] provided the following mod m characterization of $b_{m}(m n)$ relying solely on the base m representation of n :

[^0]Theorem 1.1. If $m \geq 2$ is a fixed integer and

$$
n=\alpha_{0}+\alpha_{1} m+\cdots+\alpha_{j} m^{j}
$$

is the base m representation of n (so that $0 \leq \alpha_{i} \leq m-1$ for each i), then

$$
b_{m}(m n) \equiv \prod_{i=0}^{j}\left(\alpha_{i}+1\right) \quad(\bmod m)
$$

In this note, we provide a similar mod m result for the values $c_{m}(m n)$, where $c_{m}(n)$ is the number of m-ary partitions of n with "no gaps" in the parts. More specifically, $c_{m}(n)$ counts the number of partitions of n into powers of m such that, if m^{i} is a part in a partition counted by $c_{m}(n)$, and i is a positive integer, then m^{i-1} must also be a part in the partition. For example, there are six such partitions counted by $c_{3}(15)$:

$$
\begin{aligned}
& 9+3+1+1+1, \quad 3+3+3+3+1+1+1, \quad 3+3+3+1+1+1+1+1+1 \\
& 3+3+1+1+1+1+1+1+1+1+1, \quad 3+1+1+1+1+1+1+1+1+1+1+1+1 \\
& 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
\end{aligned}
$$

Note, in particular, that $9+1+1+1+1+1+1$ does not appear in the above list because it does not contain the part 3 , and $3+3+3+3+3$ is missing from the list because it does not contain the part 1 .

This family of functions $c_{m}(n)$ is motivated by a recent work of Bessenrodt, Olsson, and Sellers [4] in which the function $c_{2}(n)$ plays a critical role.

2. The main result

The following theorem provides a complete characterization of $c_{m}(m n)$ modulo m :
Theorem 2.1. Let $m \geq 2$ be a fixed integer and let

$$
n=\sum_{i=j}^{\infty} \alpha_{i} m^{i}
$$

be the base m representation of n where $1 \leq \alpha_{j}<m$ and $0 \leq \alpha_{i}<m$ for $i>j$.
(1) If j is even, then

$$
c_{m}(m n) \equiv \alpha_{j}+\left(\alpha_{j}-1\right) \sum_{i=j+1}^{\infty} \alpha_{j+1} \ldots \alpha_{i} \quad(\bmod m)
$$

(2) If j is odd, then

$$
c_{m}(m n) \equiv 1-\alpha_{j}-\left(\alpha_{j}-1\right) \sum_{i=j+1}^{\infty} \alpha_{j+1} \ldots \alpha_{i} \quad(\bmod m)
$$

Remark 2.2. Note that Lemma 2.7 (which appears below) implies that Theorem 2.1 tells us the congruence class of $c_{m}(n)$ modulo m for all n, not just those values of n which are divisible by m.

In order to prove Theorem 2.1, we need a few elementary tools. We describe these tools here.
First, it is important to note the generating function for $c_{m}(n)$.

Lemma 2.3.

$$
C_{m}(q):=1+\sum_{n=0}^{\infty} \frac{q^{1+m+m^{2}+\cdots+m^{n}}}{(1-q)\left(1-q^{m}\right) \ldots\left(1-q^{m^{n}}\right)}
$$

Proof. The proof follows from a standard argument from [2, Chapter 1].
Next, we wish to find the generating function for $c_{m}(m n)$.

Lemma 2.4.

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{m}(m n) q^{n}=1+\frac{q}{1-q} C_{m}(q) \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/4646819

Download Persian Version:

https://daneshyari.com/article/4646819

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gea1@psu.edu (G.E. Andrews), aviezri.fraenkel@weizmann.ac.il (A.S. Fraenkel), sellersj@psu.edu (J.A. Sellers).

