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a b s t r a c t

We determine the digraphs that have the minimum and second minimum spectral radius
among all strongly connected digraphs with given order and dichromatic number. This
solves a problem posed by Lin, Shu, Wu, and Yu.
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1. Introduction

Throughout this article, we consider finite, simple strongly connected digraphs, i.e. without loops and multiple arcs.
We use standard terminology and notation and refer to [1] for an extensive treatment of digraphs. For a digraph G =
(V (G), E(G)), where V (G) and E(G) are the vertex set and arc set of G, respectively. If e =

−→
αβ ∈ E(G), then α is the initial

vertex of e andβ is the terminal vertex. The outdegree d+G (γ ) of a vertex γ is the number of arcs ofwhich it is the initial vertex
and the indegree d−G (γ ) is the number of arcs of which it is the terminal vertex. We call G strongly connected if whenever
α, β ∈ V (G), there exists a directed path from α to β .

The complete digraph
−→
Kk of order k is the digraph in which every ordered pair of distinct vertices defines an arc. The

digraph Bn,k is the digraph of order n obtained by adding a directed path from one vertex of
−→
Kk to another vertex of

−→
Kk . In

this process, n − k vertices are added and n − k + 1 arcs. We denote by Qn,k the digraph of order n obtained by adding a
directed path from one vertex of

−→
Kk to the same vertex of

−→
Kk . We also denote by

−→
Cn the directed cycle of length n and

←→
Cn

the bidirected cycle of length n.
Let G be a digraph. A vertex set A ⊆ V (G) is acyclic if the induced subdigraph G[A] is acyclic. A partition of V (G) into

k acyclic sets is called a k-coloring of G. The minimum integer k for which there exists a k-coloring of G is the dichromatic
numberχ(G) of the digraphG. This definitionwas introduced byNeumann-Lara [8] and extends the concept of the chromatic
number of a graph in a natural way.

If G is a digraph and α is a vertex of G such that the removal of α from G along with all the arcs involving α yields a
digraph with strictly smaller dichromatic number, then we say that α is a critical vertex. If χ(G) = k and every vertex of
G is critical, we say that G is a k-vertex critical digraph. The stronger concept of a k-arc critical digraph is not relevant to
this article. Mohar [7, Lemma 2.2 and Theorem 2.3] states that if G is a k-vertex critical digraph then every indegree and
outdegree is≥ k− 1. Further if the digraph is regular of degree k− 1 then one of the following cases occurs

∗ Corresponding author.
E-mail addresses: drury@math.mcgill.ca (S. Drury), huiqiulin@126.com (H. Lin).

http://dx.doi.org/10.1016/j.disc.2015.08.024
0012-365X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2015.08.024
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.08.024&domain=pdf
mailto:drury@math.mcgill.ca
mailto:huiqiulin@126.com
http://dx.doi.org/10.1016/j.disc.2015.08.024


328 S. Drury, H. Lin / Discrete Mathematics 339 (2016) 327–332

• k = 2 and G ∼=
−→
Cn with n ≥ 2,

• k = 3 and G ∼=
←→
Cn with n odd, n ≥ 3,

• G ∼=
−→
Kk .

For a digraph Gwe denote by A(G) the adjacency matrix of G. For any square matrixM with complex entries, the spectral
radius ρ(M) ofM is defined by

ρ(M) = max{|λ|; λ is an eigenvalue ofM}.

It is well known that if M has nonnegative entries, then ρ(M) is an eigenvalue of M . If G is a strongly connected digraph,
then A(G) is an irreducible matrix with nonnegative entries and ρ(A(G)) is strictly positive and is a simple eigenvalue of
A(G). We refer the reader to [4, chapter 8] for information about nonnegative matrices. We will denote by 1 the vector in
which every entry is 1 and by 1X the vector in which the entries in X are 1 and the others are 0.

In [5], the authors defined θ-digraph as follows. The θ-digraph consists of three directed paths Pa+2, Pb+2 and Pc+2 such
that the initial vertex of Pa+2 and Pb+2 is the terminal vertex of Pc+2, and the initial vertex of Pc+2 is the terminal vertex
of Pa+2 and Pb+2, denoted by θ(a, b, c). In the same paper, the authors ask if θ(0, 1, n − 3) attains the second smallest
spectral radius among all strongly connected digraphs. Hong and You [3] answered this question affirmatively. Clearly,
χ(θ(0, 1, n− 3)) = 2.

The objective of this article is to establish the following theorem, thus solving the problem of Lin et al. [6, Problem 1].

Theorem 1.1. • Let k ≥ 4. Then among all strongly connected digraphs G of order n and χ(G) = k, the unique digraph that
minimizes the ρ(A(G)) is the digraph Bn,k. The unique second minimal such digraph is Qn,k.
• If n ≥ 3 is odd, then the minimal strongly connected digraph of order n and χ(G) = 3 is the

←→
Cn and the second minimal such

digraph is Bn,3.
• If n ≥ 4 is even, then the minimal strongly connected digraph of order n and χ(G) = 3 is Bn,3 and the second minimal such

digraph is Qn,3.
• Among all strongly connected digraphs G of order n ≥ 3 and χ(G) = 2 the unique digraph that minimizes the ρ(A(G)) is the

digraph
−→
Cn . The unique second minimal such digraph is θ(0, 1, n− 3).

We remark that the corresponding theorem for graphs was solved in Feng et al. [2]. A proof of their theorem can also be
found in [9, page 94].

2. Estimating the Perron root of A(Bn,k) and A(Qn,k)

Lemma 2.1. For 2 ≤ k < n the characteristic polynomial of the adjacency matrix of Bn,k is given by

det(λI − A(Bn,k)) = (λ+ 1)k−2

λn+2−k

− (k− 2)λn+1−k
− (k− 1)λn−k

− 1

.

Proof. We denote by J the k× k matrix of all ones, by N the (n− k)× (n− k) matrix with ones on the superdiagonal and
zeros elsewhere, by C1, C2 and C3 the matrices of shapes k× (n− k), (n− k)× k and (n− k)× (n− k) respectively with a
one at the bottom left-hand corner and zeros elsewhere. Then we may write with suitable labeling of the vertices of Bn,k

λI − A(Bn,k) =


(λ+ 1)I − J −C1
−C2 λI − N


where I denotes the identity matrix of appropriate size. Then, using a well-known Schur complements formula we have for
α = (λ+ 1)−1, β = (λ+ 1)−1(λ+ 1− k)−1

det(λI − A(Bn,k)) = det(λI − N) det((λ+ 1)I − J) det(I − C2((λ+ 1)I − J)−1C1(λI − N)−1)

= λn−k(λ+ 1)k−1(λ+ 1− k) det(I − C2(αI + βJ)C1(λI − N)−1)

= λn−k(λ+ 1)k−1(λ+ 1− k) det(I − βC2JC1(λI − N)−1)

= λn−k(λ+ 1)k−1(λ+ 1− k) det(I − βC3(λI − N)−1)

= λn−k(λ+ 1)k−1(λ+ 1− k)

1− βtr(C3(λI − N)−1)


= (λ+ 1)k−2


λn+2−k

− (k− 1)λn+1−k
− (k− 1)λn−k

− 1


using at various points C2C1 = 0 for k ≥ 2, C2JC1 = C3, det(I − X) = 1 − tr(X) if X has rank one and by an easy matrix
calculation tr(C3(λI − N)−1) = λ−(n−k). �

Lemma 2.2. For 2 ≤ k < n the characteristic polynomial of the adjacency matrix of Qn,k is given by

det(λI − A(Qn,k)) = (λ+ 1)k−2

λn+2−k

− (k− 2)λn+1−k
− (k− 1)λn−k

− λ+ (k− 2)

.
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