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the set of all vertices y with the property that no shortest path between x and z, z # y,
contains y. The cut locus coincides with the graph induced by the vertices realizing the
local maxima of the distance function. The function F mapping a vertex x to F (x), the set of
global maxima of the distance function from x, is the farthest point mapping. Among other

gz;vg :jdiss.tan ce function things, we observe that if, for a vertex x, C(x) is connected, then C(x) is the graph induced by
Cut locus F(x), and prove that the farthest point mapping has period 2. Elaborating on the analogy
Farthest point mapping with Geometry, we study graphs satisfying Steinhaus’ condition, i.e. graphs for which the
Diameter farthest point mapping is single-valued and involutive.

Injectivity radius © 2015 Elsevier B.V. All rights reserved.

1. Introduction

The main goal of this paper is to study the class of graphs for which the function which maps a vertex x to the set of vertices
farthest from x (with respect to the metric defined via shortest paths), the so-called farthest point mapping, is both single-
valued and involutive. (Note that in more established graph-theoretical terms, the farthest vertices from a fixed vertex x are
just the vertices whose distance to x coincides with the eccentricity of x.) For an overview of results concerning distance in
graphs, see the monograph by Buckley and Harary [9], and the surveys by Goddard and Oellermann [19], and Chartrand and
Zhang [ 14]. The following two aspects will be reflected upon:

(i) We will work with the notion of “cut locus” from Differential Geometry (see [31], and for a “panoramic” view [4]; its
connection to the famous optimal transport problem can be found in [38]), and analyse consequences of its application in
Graph Theory. The geometric origins of the cut locus, in their most general setting, lie in a metric space (X, p), the metric of
which is intrinsic. This motivates the graph theoretical definition, which mimics - as far as possible - its geometric analogue.
Consider x € X.y € X is a cut point of x if for any segment y from x to y there exists no other segment o 2 y starting at x.
The set of all cut points of x is called the cut locus of x. As it is of central importance, let us emphasize what we understand
by segment: a shortest path between x and y, i.e. an arc of length p(x, y). Explicitly, the geometric concept of the cut locus
was introduced by Poincaré [36] in 1905, who used the term “ligne de partage”, whereas implicit use occurred at least as
early as 1881, in a paper by von Mangoldt [39]. Poincaré’s work on surfaces was extended to Riemannian manifolds in the
1930s by Whitehead [40] (who coined the term “cut locus”) and Myers [32,33].

(ii) We also investigate graphs for which the farthest point mapping need not be single-valued, but the set of vertices
realizing the local maxima and the set of vertices realizing the global maxima of the distance function coincide for every
vertex of the graph. The underlying motivation for studying these graphs is a natural consequence of the involutivity of the
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farthest point mapping, the results arising from (i), and the study of the injectivity radius (i.e. the minimum over all distances
between a vertex and its cut locus), another concept borrowed from Differential Geometry and relevant to our pursuits.

Recently, O'Rourke asked for translating the idea of the cut locus to Graph Theory [34]. Itoh and Vilcu also connected the
concepts of cut locus and graphs, but in a different sense: One of their main results is that for every graph G there exists a
surface S and a point in S whose cut locus is isomorphic to G; rephrasing, every graph can be realized as a cut locus. This,
and related results, can be found in a series of four papers [23-26].

1.1. Preliminaries

Throughout this paper all graphs will be simple, i.e. without loops or multiple edges', undirected, and finite, and have
order at least 3, unless explicitly mentioned otherwise. For the inclusion relation between sets we will use the following
notation. The symbol C shall designate inclusion where equality may hold, and C inclusion where equality is forbidden.

Let G = (V(G), E(G)) be a connected graph, where V(G) (E(G)) denotes its vertex (edge) set. For a set S we will denote
by |S| its cardinality. The edge between two vertices u and v will be denoted by uv. For vertex sets or subgraphs X, Y, put
EX,Y) = {xy : x € X,y € Y}. For a set of vertices or a (possibly disconnected) subgraph H C G, we shall use (H) for the
graph induced by H. We also need the (set-theoretical) complement CH = (V(G — H)). We say that H dominates G if every
vertex of V(G) — H is adjacent with a vertex of H. Abusing notation, we will make no distinction between a vertex x, the
graph ({x}, #) = K; and the set {x}. For two graphs G and G’ we denote by GOG' the Cartesian product of Gand G'.S C V(G)
is a separator (of G) if (V(G) \ S) is not connected. We denote by « (G) the connectivity of G, namely the minimum cardinality
of a separator of G (if G is not a complete graph).

ConsidernowH CJ C G Y CJ CGwithHNY =@,x € V(H),andy € V(Y). Anxy-path P in] is a path inJ connecting
x and y, while the length of the path P is equal to |E(P)|. Furthermore, let the distance between H and Y in J be defined as

dH,Y)= min {|EQP)|: P xy-pathin]}.
XeV(H),yeV(Y)
When there exists no path between H and Y in ], we put & (H, Y) = co. When ] = Gwe write d°(H, Y) = d(H, Y) = dy(Y)
for the distance between H and Y, and call dy the distance function (with respect to H) — in this paper we will use both the
second (d(H, Y)) and third (dy (Y)) notation, depending on which seems more intuitive in a given context.
The eccentricity of a vertex x, and the radius and diameter of G are defined as
e(x) = max d(x, y), r(G) = min e(x), and diam(G) = max &(x),
yev(G) xeV(G) xeV(G)
respectively. For a survey on diameters of graphs, see [15]. An important article on radii, diameters and minimum degree
is [17]. The centre of a graph is Z(G) = {x : e(x) = r(G)}. A graph is self-centred (also equi-eccentric), if r(G) = diam(G).
Denote the set of all self-centred graphs by C. For a survey on the family of graphs C, see [6].

We recall [27] that a finite metric space (X, p) is isometric to some graph if and only if (i) for any two points x, y € X we
have p(x, y) € Ny, and (ii) if p(x, y) > 2 then there exists a third point z such that p(x, z) 4+ p(z,y) = p(x, y).

A shortest path o between x and y, i.e. an xy-path of length d(x, y), will be called an xy-segment, and its length denoted
by |o|. (Note that many graph theorists call the shortest path between two vertices “geodesic”, but we opine that, especially
when writing a paper concerning the cut locus, a notion from Differential Geometry, it is acceptable to deviate from
standard graph-theoretical nomenclature.) In Geometry, this corresponds to the term “segment”, or “geodesic segment”,
or “minimizing geodesic”, i.e. a globally distance-minimizing arc. A graph theoretical notion corresponding to a “geodesic”
(i.e. locally distance minimizing) can easily be defined, for instance by asking a path to admit no chord between any two of
its vertices at distance 2 on the path, but will not be used in this paper.

Consider a subgraph H C G and a vertex y € V(G). An Hy-segment is a path between some x € V(H) and y of length
dy(y). Put

Ni(H) = {y € V(G) 1 dy(¥) =i} and NiH]={y € V(G) :dy(y) <i}, i=0.

Ni(H) = N(H) (N{[H] = N[H]) is the neighbourhood (closed neighbourhood) of H in G. When two vertices are at distance
1, we say that they are neighbours. For a vertex x € V(H) define its degree (with respect to H) as degy (x) = |{y € V(H) :
d" (x, y) = 1}/, and put deg.(x) = deg(x). Furthermore, let us write V;(H) = {x € V(H) : deg(x) = 1}. Define

F(H) = “x e V(G) : dy(x) = max dH(y)}>,
yev(G)

which is the graph induced by the vertices realizing global maxima of the distance function dy, i.e. the graph induced by the
farthest vertices from H. Two points x, y € V(G) are antipodal (each is the antipode of the other) if d(x, y) = diam(G). The
function F is the farthest point mapping. Notice that for a vertex x we have (x) = d(x, F(x)). For a local version, put

M(H) = ({x € V(CH) : dy(x) > dy(y) Yy € N(x)}) D F(H)
and, fori > 1,
M;i(H) = {v € Ni(H) : E (v, Ni;.1(H)) = 0} .

1 Extending the results to multigraphs would result in additional technicalities in some proofs.
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