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1. Introduction

Ifc: VUE — {1, 2,...,k} is a proper total coloring of a graph G = (V, E) then the palette or color set C(v) of a vertex
v € V is the set of colors of the incident edges and the color of v: C(v) = {c(e) : e = vw € E} U {c(v)}. A total coloring c
distinguishes vertices u and v if C(u) # C(v).

The strong total chromatic number x/ (G) or vertex distinguishing total chromatic number x,(G) is the minimum number
of colors of a proper total coloring of a graph G that distinguishes every pair of distinct vertices. Such total colorings are called
strong total colorings or vertex distinguishing total colorings (VDTC) and were introduced in [ 18] (for results see also [1,2]).

On the other hand, the adjacent strong total chromatic number or adjacent vertex distinguishing total chromatic number
Xee (G), xJ(G), or xqt(G) is defined as the minimum number of colors of a proper total coloring of a graph G that distinguishes
every pair of adjacent vertices. This parameter was first studied in [3,16]. Further results can be found in, e.g., [4-6,8,9,11].

In this paper we consider d-strong total colorings of a graph G. Such a coloring is a proper total coloring of G that dis-
tinguishes all pairs of vertices u and v with distance 1 < d(u, v) < d. The minimum number of colors of a d-strong total
coloring is called d-strong total chromatic number x (G) of G. These total colorings and chromatic invariants were introduced
by Zhang et al. in [17] as D(d)-vertex distinguishing total colorings (D(d)-VDTC) and D(d)-vertex distinguishing total chromatic
numbers x4, (G), respectively. Results for small d are also contained in [15,19].

As an example, a 1-strong total coloring of the complete bipartite graph K, 3 with 4 colors and a 2-strong (also strong)
total coloring with 5 colors are shown in Fig. 1. Adjacent vertices of K; 3 have palettes of different cardinality which implies
that every total coloring is also a 1-strong total coloring. Since A(K; 3)+1 = 41is a trivial lower bound for x (sz 3) it follows
that x; (Kz,3) = 4. On the other hand, x5 (K;,3) > 5 since at least 5 colors are needed to distinguish the two vertices of

degree 3 at distance 2 from each other. Therefore ;' (K»3) = 5.
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Fig. 1. x{ (K33) =4, x5 (Kz23) =5.

Fig.2. x; (Cs) =5, x5 (H) = 4where G C H.

Note that x.; (G) = x{ (G) and that for connected graphs x,’ (G) = x; (G) ifd > diam (G) where diam (G) is the diam-
eter of the graph G. Therefore, d-strong total colorings are generalizations of strong total colorings and of adjacent vertex
distinguishing total colorings as well.

The following properties of x; (G) are obvious.

Lemma 1 (Monotonicity). If d < t then x; (G) < x/ (G).
Proof. A t-strong total coloring of G with t > d clearly distinguishes all pairs of vertices of distance at mostd. O

Obviously, it also holds x; (G) < x. (G) forany d € N.

Lemma 2 (Additivity). If G = Hy U H; then x; (G) = max{x; (H1), x; (H2)}.

Proof. The components of G can be colored independently since vertices in different components have not to be
distinguished. O

If Gisasubgraph of H, G € H, then note that this does not imply x, (G) < x/ (H) in general (see Fig. 2 for a counterexam-
ple), that is, the property x; (G) < kis not a hereditary property (also not an induced hereditary property by the example).

2. General bounds

Let G be a graph of order n and let d; be the number of vertices of G of degree i. Then
W (G) = maximin{j : ( _ i 1) > d,»} 56 <i< A(G)}
i

is a trivial lower bound for the strong total chromatic number, x.” (G) > u?(G).Itis conjectured thatalso ;" (G) < u.(G)+1
holds, i.e., that the strong total chromatic number of a graph G attains one of two values. This conjecture is true, e.g., for paths
Py, cycles C,, complete graphs K;, and complete bipartite graphs K, , (see [16,18]). A general upper bound for the strong
total chromatic number is x.' (G) < |[V(G)| + 2 [18].

Analogously, let in the following n; denote the maximum number of vertices of degree i that are of pairwise distance at
most d. Then

Wy (G) = maximinlj : (—ij— 1) > ni] 286 i< A(G)]
i
is a trivial lower bound for the d-strong total chromatic number,

Xd (G) = pg(G). (1)

Note that n; = d; and therefore 11/;(G) = u{(G) for connected graphs G and d > diam (G).
Zhang et al. [17] conjectured that also the d-strong total chromatic number attains one of two possible values.

Conjecture 3 ([17]). x; (G) < w,(G) + 1 for all connected graphs G with |V (G)| > 2.

Conjecture 3 implies x; (G) < A(G) + 3, a well-known conjecture for the adjacent strong total chromatic number (see
[16]), since there are at most i+ 1 pairwise adjacent vertices of degree i in G which implies 1}/ (G) < A(G) + 2 and therefore,
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