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a b s t r a c t

Our point of departure is Fleischner and Häggkvist (2014, Theorem 2). We first generalize
this theorem. Then we apply it to cubic graphs whose vertex set can be decomposed into
two classes, one class inducing a circuit and the other class inducing a (subdivision of a)
caterpillar.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and preliminary discussion

All concepts not defined in this paper can be found in the textbook by Bondy and Murty [1], with the exception that we
call a connected 2-regular graph a circuit, whereas a cycle is a (not necessarily connected) graph all of whose vertices have
even degree.

The Cycle Double Cover Conjecture (CDCC) has found a lot of attention since the 1970s (see, e.g., the introduction of [2]),
and there is even a book on Cycle Double Covers (CDCs) by C.-Q. Zhang [3]. Now, the CDCC claims that in an arbitrary
bridgeless graph G there is a family of cycles (or, equivalently, a family of circuits), S such that every edge of G is covered by
exactly two elements of S. In producing a CDC one is sometimes led to construct a (1, 2)-circuit cover first, which is a circuit
cover using every edge at least once and at most twice.

At this point of development on the CDCC, various methods have evolved to produce CDCs in various classes of graphs,
but there is no general method in sight yet which could result in a full solution of the CDCC. Correspondingly, we focus in
this paper on the following types of connected graphs.

(i) G = G(C2k, C4k, I2k) where C2k and C4k are chordless circuits of length 2k, 4k respectively, and the remaining vertices
lie in I2k which is an independent set of vertices each of whose elements is adjacent to two vertices of C4k and to one
vertex of C2k;

(ii) G = G(C1, C2, I, E1,2), where C1 is a circuit with d ≥ 0 chords, C2 is an induced circuit, I is an independent set comprising
the remaining vertices with |N(v) ∩ V (C1)| = 1, |N(v) ∩ V (C2)| = 2 for every vertex v ∈ I , and the remaining edges
lie in E1,2 := E(C1, C2);

(iii) G = G(C, T , E(C, T ); x, y)whereG is vertex-covered by the induced circuit C and the induced tree T with C∩T = {x, y},
and the remaining edges are in E(C, T ).

∗ Corresponding author.
E-mail address: herbert.fleischner@dbai.tuwien.ac.at (H. Fleischner).

http://dx.doi.org/10.1016/j.disc.2014.11.021
0012-365X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2014.11.021
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.11.021&domain=pdf
mailto:herbert.fleischner@dbai.tuwien.ac.at
http://dx.doi.org/10.1016/j.disc.2014.11.021


H. Fleischner, R. Häggkvist / Discrete Mathematics 338 (2015) 1750–1754 1751

Weobserve that the graphs in (i) have been treated in [2], whereas some cubic graphs in (ii), (iii) are shown in the present
paper to have CDCs. Note that in the cubic case, the graphs of (ii) considered in Theorem 1 can be viewed as generalizations
of the graphs of (i). Consequently, our point of departure is the following theorem.

Theorem A ([2, Theorem 2]). Let G = G(C2k, C4k, I2k) be a cubic graph of the type described in (i) above. Then G has a CDC S
with C4k ∈ S.

Theorem A serves as the basis of the following:

Theorem 1. Let G = G(C1, C2, I, E1,2) be a cubic graph of the type described in (ii) above such that |I| ≡ |E1,2| ≡ 0 mod 2 and
ℓ(C1) = |I| + |E1,2| + 2d where d is the number of chords of C1. Then G has a CDC S with C2 ∈ S.

In proving Theorems 1 and 2 wemake use of two essentially standard concepts which we define here to make the proofs
precise.

First of all, given a vertex set T with an even number of elements in the graphG, a T-join ofG is a spanning subgraphGo ofG
such that the odd vertices inGo are the elements in T . Note that a connected graphG has a T -join for every even set T ⊂ V (G).

Secondly, a caterpillar is a tree B such that every vertex is either on a longest path Pmax or adjacent to a vertex on Pmax. Such
Pmax is called a spineofB. Herewe are concernedwith caterpillarsBofmaximumdegree 3 inwhich caseBhas atmost 4 spines.

Theorem 2. Let G = G(C, T , E(C, T ); x, y) be a cubic graph of the type described in (iii) above such that

(1) T is a caterpillar;
(2) x and y are the ends of a spine of T ;
(3) the components of C − {x, y} are paths of even length;
(4) |{v ∈ V (T ) : dT (v) = 2}| ≡ |{v ∈ V (T ) : dT (v) = 3}| ≡ 0 mod 2.

Then G has a CDC S with C ∈ S.

2. Proofs

Proof of Theorem 1. We start from the definition of the graphsmentioned in (ii) and the condition of the length of C1 in the
statement of the theorem. These imply that the graphs under consideration result in a graph homeomorphic to a graph of
type (i)when removing the edges of E1,2 and the chords of C1. Thuswe consider the graphG0 as in the proof of TheoremA; i.e.,
G0 is the cubic graph homeomorphic to G′

:= G−V (C1). In particular, G0 contains the Hamiltonian circuit C0
2 corresponding

to C2; thusG0 has a 3-edge coloring Lr , Lb, Ly such that E(C0
2 ) = Lr ∪Lb. Because of the definition of the graphG and the length

of C1, it follows that ℓ(C0
2 ) = 4kwhere 2k = |I|. Next, we consider the edge-induced subgraphs Gr,y,Gb,y of G0 defined by

Gr,y := ⟨Lr ∪ Ly⟩G0 , Gb,y := ⟨Lb ∪ Ly⟩G0 .

Now we construct a bipartite graph H with vertex bipartition

V (H) = Vr,y∪̇Vb,y

such that cs,y ∈ Vs,y corresponds bijectively to a component Cs,y of Gs,y for s ∈ {r, b}. Moreover, cr,y and cb,y are joined by
|E(Cr,y) ∩ E(Cb,y)| edges. Observe that

dH(cr,y) = |E(Cr,y) ∩ Ly| and dH(cb,y) = |E(Cb,y) ∩ Ly|.

Because of the 3-edge-coloring considered and since ℓ(C0
2 ) = 4k, it follows that |Ly| is even and thus the number of odd

vertices ofH in Vr,y is even, and the same holds in Vb,y. Thus |E(H)| ≡ 0 mod 2. Moreover, the edges of Ly and thus the edges
of H correspond bijectively to the vertices of I .

We note in passing that so far the proof coincides with that of Theorem A.
Now we consider H ′

:= S(H), the subdivision graph of H; denote by s(e) the subdivision vertices of H, e ∈ E(H). More-
over, denote by d1,2(c) the number of edges in E1,2 which are incident to a vertex inserted in a red (blue respectively) edge in
the component of Gr,y (Gb,y respectively) defining c ∈ V (H). Observe that


c∈V (H) d1,2(c) = |E1,2| and that H ′ is connected

(see the proof of Theorem A).
Define

T := {s(e) ∈ V (H ′) : e ∈ E(H)}∪̇{c ∈ V (H) : dH(c) ≢ d1,2(c) mod 2}.

We aim at finding a T -join in H ′. To this end we need to prove the following.

Claim. |T | ≡ 0 mod 2.

Next we define the following sets:

V e
1,2 := {c ∈ V (H) : d1,2(c) ≡ 0 mod 2}, V o

1,2 := V (H) − V e
1,2,

V e
H := {x ∈ V (H) : dH(x) ≡ 0 mod 2}, V o

H := V (H) − V e
H .
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