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1. Introduction and preliminary discussion

All concepts not defined in this paper can be found in the textbook by Bondy and Murty [1], with the exception that we
call a connected 2-regular graph a circuit, whereas a cycle is a (not necessarily connected) graph all of whose vertices have
even degree.

The Cycle Double Cover Conjecture (CDCC) has found a lot of attention since the 1970s (see, e.g., the introduction of [2]),
and there is even a book on Cycle Double Covers (CDCs) by C.-Q. Zhang [3]. Now, the CDCC claims that in an arbitrary
bridgeless graph G there is a family of cycles (or, equivalently, a family of circuits), S such that every edge of G is covered by
exactly two elements of S. In producing a CDC one is sometimes led to construct a (1, 2)-circuit cover first, which is a circuit
cover using every edge at least once and at most twice.

At this point of development on the CDCC, various methods have evolved to produce CDCs in various classes of graphs,
but there is no general method in sight yet which could result in a full solution of the CDCC. Correspondingly, we focus in
this paper on the following types of connected graphs.

(i) G = G(Cyy, Cyy, Irx) where Cy, and Cy are chordless circuits of length 2k, 4k respectively, and the remaining vertices
lie in I, which is an independent set of vertices each of whose elements is adjacent to two vertices of C4 and to one
vertex of Cy;

(ii) G = G(Cy, Gy, I, E12), where C; isa circuit with d > 0 chords, G, is an induced circuit, I is an independent set comprising
the remaining vertices with [N(v) N V(Cy)| = 1, IN(v) NV (C,)| = 2 for every vertex v € I, and the remaining edges
lie in E]qz = E(C], Cz);

(iii) G = G(C, T, E(C, T); x, y) where G is vertex-covered by the induced circuit C and the induced tree T with CNT = {x, y},
and the remaining edges are in E(C, T).
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We observe that the graphs in (i) have been treated in [2], whereas some cubic graphs in (ii), (iii) are shown in the present
paper to have CDCs. Note that in the cubic case, the graphs of (ii) considered in Theorem 1 can be viewed as generalizations
of the graphs of (i). Consequently, our point of departure is the following theorem.

Theorem A ([2, Theorem 2]). Let G = G(Cyy, Cai, Iox) be a cubic graph of the type described in (i) above. Then G has a CDC S
with Cy € S.

Theorem A serves as the basis of the following:

Theorem 1. Let G = G(Cy, Gy, I, Eq,2) be a cubic graph of the type described in (ii) above such that |I| = |E;»| = 0 mod 2 and
£(Cy) = |I| + |E12| + 2d where d is the number of chords of C;. Then G has a CDC S with C; € S.

In proving Theorems 1 and 2 we make use of two essentially standard concepts which we define here to make the proofs
precise.

First of all, given a vertex set T with an even number of elements in the graph G, a T-join of G is a spanning subgraph G, of G
such that the odd vertices in G, are the elements in T. Note that a connected graph G has a T-join for every evenset T C V(G).

Secondly, a caterpillar is a tree B such that every vertex is either on a longest path Py, or adjacent to a vertex on Pp,ax. Such
Prax is called a spine of B. Here we are concerned with caterpillars B of maximum degree 3 in which case B has at most 4 spines.

Theorem 2. Let G = G(C, T, E(C, T); x,y) be a cubic graph of the type described in (iii) above such that

(1) T is a caterpillar;

(2) x and y are the ends of a spine of T;

(3) the components of C — {x, y} are paths of even length;

(4) {v e V(T) : dr(v) =2} = |{v € V(T) : dr(v) = 3} = 0 mod 2.

Then G has a CDC S with C € S.
2. Proofs

Proof of Theorem 1. We start from the definition of the graphs mentioned in (ii) and the condition of the length of C; in the
statement of the theorem. These imply that the graphs under consideration result in a graph homeomorphic to a graph of
type (i) when removing the edges of E; ; and the chords of C;. Thus we consider the graph Gy as in the proof of Theorem A; i.e.,
Go is the cubic graph homeomorphic to G’ := G — V(C;). In particular, Gy contains the Hamiltonian circuit CS corresponding
to Cy; thus Go has a 3-edge coloring L,, Ly, L, such that E(CS) = L. ULy. Because of the definition of the graph G and the length
of Cy, it follows that E(Cg) = 4k where 2k = |I|. Next, we consider the edge-induced subgraphs G, ,, Gy, y of Go defined by

Gr’y = <Lr U Ly>G()7 Gb,y = (Lb U Ly>Go'
Now we construct a bipartite graph H with vertex bipartition
V(H) =V, ,UVy,

such that ¢;, € V;, corresponds bijectively to a component C; ,, of G, ,, for s € {r, b}. Moreover, ¢, , and ¢, , are joined by
|E(Cry) NE(Cpy)| edges. Observe that
dH(Cr,y) = |E(Cr,y) N Ly| and dH(Cb,y) = |E(Cb,y) N Ly|-

Because of the 3-edge-coloring considered and since ¢(Cy) = 4k, it follows that |L,| is even and thus the number of odd
vertices of H in V; ,, is even, and the same holds in V}, ,. Thus |[E(H)| = 0 mod 2. Moreover, the edges of L, and thus the edges
of H correspond bijectively to the vertices of I.

We note in passing that so far the proof coincides with that of Theorem A.

Now we consider H' := S(H), the subdivision graph of H; denote by s(e) the subdivision vertices of H, e € E(H). More-
over, denote by d; »(c) the number of edges in E; , which are incident to a vertex inserted in a red (blue respectively) edge in
the component of G, , (Gp,, respectively) defining c € V(H). Observe that Zcev(m dq2(c) = |E1 2| and that H' is connected

(see the proof of Theorem A).
Define

T :={s(e) € V(H') : e € E(H)}U{c € V(H) : dy(c) # dq2(c) mod 2}.

We aim at finding a T-join in H'. To this end we need to prove the following.

Claim. |T| = 0 mod 2.
Next we define the following sets:
Vi, ={ceV(H) :di,(c) =0mod 2}, Vi, =V(H) — Vi,
Vi = {x € V(H) : dy(x) = 0 mod 2}, Vi =VH) — V.
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