Point determining digraphs, $\{0,1\}$-matrix partitions, and dualities in full homomorphisms

Pavol Hell, César Hernández-Cruz*
School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

A R TICLE INFO

Article history:

Received 2 August 2013
Accepted 2 December 2014
Available online 21 December 2014

Keywords:
Matrix partition
Generalized colouring
Full homomorphism
Point determining digraph
Homogeneous set
Minimal obstruction

Abstract

A digraph D is point determining if for any two distinct vertices u, v there exists a vertex w which has an arc to (or from) exactly one of u, v. We prove that every point-determining digraph D contains a vertex v such that $D-v$ is also point determining. We apply this result to show that for any $\{0,1\}$-matrix M, with k diagonal zeros and ℓ diagonal ones, the size of a minimal M-obstruction is at most $(k+1)(\ell+1)$. This is a best possible bound, and it extends the results of Sumner, and of Feder and Hell, from undirected graphs and symmetric matrices to digraphs and general matrices.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider partitions of a digraph D into sets that satisfy certain internal constraints (the set induces an independent set or a clique), and external constraints (a sets is completely adjacent or completely non-adjacent to another set). These constraints are encoded in a $\{0,1\}$-matrix (also called a $\{0,1\}$-pattern [4]) M defined below. We assume that the digraph D has no loops. (We will allow loops, but only in a digraph that will be denoted exclusively by H.) The in-neighbourhood (outneighbourhood) of a vertex v, denoted by $N^{-}(v)$ (respectively by $N^{+}(v)$), is the set of all vertices u in D such that $(u, v) \in A(D)$ $((v, u) \in A(D))$. A strong clique of D is a set C of vertices such that for any two distinct vertices $x, y \in C$ both $\operatorname{arcs}(x, y),(y, x)$ are in D; and an independent set of D is a set I of vertices such that for any two vertices $x, y \in C$ neither pair $(x, y),(y, x)$ is an arc of D. Let S, S^{\prime} be two disjoint sets of vertices of D : we say that S is completely adjacent to S^{\prime} (or S^{\prime} is completely adjacent from S) if for any $x \in S, x^{\prime} \in S^{\prime}$, the arc (x, x^{\prime}) is in D; and we say that S is completely non-adjacent to S^{\prime} (or S^{\prime} is completely non-adjacent from S) if for any $x \in S, x^{\prime} \in S^{\prime}$, the pair (x, x^{\prime}) is not an arc of D.

Throughout this paper, M will be a $\{0,1\}$-matrix with k diagonal 0 's and ℓ diagonal 1's. For convenience we shall assume that the rows and columns of M are ordered so that the first k diagonal entries are 0 , and the last ℓ diagonal entries are 1 . (Thus $k+\ell$ is the size of the matrix.)

An M-partition of a digraph D is a partition of its vertex set $V(D)$ into parts $V_{1}, V_{2}, \ldots, V_{k+\ell}$ such that

- V_{i} is an independent set of D if $M(i, i)=0$.
- V_{i} is a strong clique of D if $M(i, i)=1$.
- V_{i} is completely non-adjacent to V_{j} if $M(i, j)=0$.
- V_{i} is completely adjacent to V_{j} if $M(i, j)=1$.

[^0]In [3] we introduced a more general version of matrix partitions, in which matrices are allowed to have an $*$ entry implying no restriction on the corresponding set, or pair of sets. For a survey of results on M-partitions we direct the reader to [4].

A full homomorphism of a digraph D to a digraph H is a mapping $f: V(D) \rightarrow V(H)$ such that for distinct vertices x and y, the pair (x, y) is an arc of D if and only if $(f(x), f(y))$ is an arc of H. The following observation is obvious: let H denote the digraph whose adjacency matrix is M. (Note that H has loops if $\ell>0$.) Then D admits an M-partition if and only if it admits a full homomorphism to H. It should be pointed out that our definition of full homomorphism (in particular the requirement that x, y be distinct) is tailored to correspond to matrix partitions as defined in [3]. The standard definition [6,7,1] does not require this distinctness; this accounts for small discrepancies between the results of this paper and that of [1]. However, when H has no loops, i.e., when $\ell=0$, the two definitions coincide.

Undirected graphs are viewed in this paper as special cases of digraphs, i.e., each undirected edge $x y$ is viewed as the two $\operatorname{arcs}(x, y),(y, x)$. For a symmetric $\{0,1\}$-matrix M, the same definition applies to define an M-partition of an undirected graph $G[3,4]$.

The questions investigated here have been studied for undirected graphs in [2,1], cf. [4]. It is shown in [2,1] that for any symmetric $\{0,1\}$-matrix M (i.e., any undirected graph H with possible loops) there is a finite set g of graphs such that G admits an M-partition (i.e., a full homomorphism to H) if and only if it does not contain an induced subgraph isomorphic to a member of g. This property is what [1] calls a duality of full homomorphisms. Alternately [4], we define a minimal obstruction to M-partition to be a digraph D which does not admit an M-partition, but such that for any vertex v of D, the digraph $D-v$ does admit an M-partition. Thus the results of [1,2] imply that each symmetric $\{0,1\}$-matrix M has only finitely many minimal graph obstructions. In [2] it is shown that these minimal graph obstructions have at most $(k+1)(\ell+1)$ vertices, and that there are at most two minimal graph obstructions with precisely $(k+1)(\ell+1)$ vertices. For the purposes of this proof, the authors of [2] consider the following concept. A graph is point determining if distinct vertices have distinct open neighbourhoods. According to Sumner [8], each point determining graph H contains a vertex v such that $H-v$ is also point determining; the authors of [2] derived their bound by proving a refined version of Sumner's result.

For digraphs (and $\{0,1\}$-matrices M that are not necessarily symmetric), it is still true that each M has at most a finite set of minimal digraph obstructions [1,4]. In this paper we prove that the optimal bound still applies, i.e., that it is still the case that each minimal digraph obstruction has at most $(k+1)(\ell+1)$ vertices. (This was conjectured in earlier versions of [4].) For this purpose we define a digraph version of point determination and prove the analogue of Sumner's result. Since undirected graphs can be viewed as symmetric digraphs, our results imply the $(k+1)(\ell+1)$ bound for graphs from [2], as well as the basic version of Sumner's result.

We leave open the question whether a $\{0,1\}$-matrix M always has at most two minimal digraph obstructions with $(k+1)$ $(\ell+1)$ vertices; we do not have a counterexample.

In Section 2, we prove the above digraph version of Sumner's theorem, using the tools from [2]. In Section 3 we use this result to derive our $(k+1)(\ell+1)$ bound for the size of a minimal M-obstruction which has no (true or false) twins. In Section 4 we do the same for minimal M-obstructions that do have twins.

2. Point-determining digraphs

Let D be a digraph and let u, v, w be distinct vertices in D; we say that vertex w distinguishes vertices u, v in D if exactly one of u, v is in the in-neighbourhood of w, or exactly one of u, v is in the out-neighbourhood of w. We say that u, v are twins in D if there is no vertex that distinguishes them in D. We say that twins u, v are true twins if $\{u, v\}$ is a strong clique and false twins if $\{u, v\}$ is an independent set. We say that a digraph is point-determining if it does not contain a pair of false twins. Note that D has no true twins if and only if the complement of D is point-determining.

In this section we will prove the following digraph analogue to Sumner's theorem.
Theorem 1. If D is a point-determining digraph, then there exists at least one vertex $v \in V(D)$ such that $D-v$ is pointdetermining.

To prove this we will consider the notion of a triple in a point-determining digraph (cf. [2] for an analogous undirected concept). Let D be a point-determining digraph. A triple $T=(x,\{y, z\})$ of G consists of a vertex x of D, called the red vertex of T, and an unordered pair $\{y, z\}$ of vertices of D, called the green vertices of T, such that y, z are false twins in $D-x$. (Thus x is the only vertex of G that distinguishes y and z.) We begin with two lemmas.

Lemma 2. Let D be a point-determining digraph, and let T_{1} and T_{2} be two triples of D. If T_{1} and T_{2} intersect in a vertex that is green in T_{1} and red in T_{2}, then they intersect in another vertex that is green in T_{2} and red in T_{1}.
Proof. Consider two triples that share a vertex z which is red in one triple and green in the other, say triples $T_{1}=(z, u, v)$ and $T_{2}=(x, y, z)$. If $\{x, y\} \cap\{u, v\}=\varnothing$, then since z is the unique vertex distinguishing u and v, the vertex y does not distinguish u and v. This means that one of the vertices u, v distinguishes y and z, which contradicts the fact that $(x,\{y, z\})$ is a triple of D (i.e., x is the only vertex of D distinguishing y and z). If $y \in\{u, v\}$ and $x \notin\{u, v\}$, say, $y=u$ and $v \neq x$, then v is not adjacent to $u=y$, so v is not adjacent to z, because $(x,\{y, z\})$ is a triple and $v \neq x$. The vertices $u=y$ and z are not adjacent either, as $(x,\{y, z\})$ is a triple; this contradicts the fact that $(z,\{u, v\})$ is a triple. Therefore x must be one of u, v.

Lemma 3. Let D be a point-determining digraph. There exists at least one vertex in D that is red in no triple of D.

https://daneshyari.com/en/article/4646847

Download Persian Version:

https://daneshyari.com/article/4646847

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pavol@sfu.ca (P. Hell), cesar@matem.unam.mx (C. Hernández-Cruz)

