Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Forbidden subgraphs in the norm graph

Simeon B[a](#page-0-0)ll^a, Valentina Pepe ^{[b,](#page-0-1)[∗](#page-0-2)}

a *(UPC and Barcelona Graduate School of Mathematics), Departament de Matemàtiques, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Mòdul C3, Campus Nord, 08034 Barcelona, Spain* b *SBAI Department, Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy*

ARTICLE INFO

a b s t r a c t

Article history: Received 11 May 2015 Received in revised form 16 November 2015 Accepted 17 November 2015 Available online 15 December 2015

Keywords: Forbidden subgraph Norm graph

1. Introduction

Let *H* be a fixed graph. The *Turán number* of *H*, denoted *ex*(*n*, *H*), is the maximum number of edges a graph with *n* vertices can have, which contains no copy of *H*. The Erdős–Stone theorem from [\[5\]](#page--1-0) gives an asymptotic formula for the Turán number of any non-bipartite graph, and this formula depends on the chromatic number of the graph *H*.

We show that the norm graph with *n* vertices about $\frac{1}{2}n^{2-1/t}$ edges, which contains no copy of the complete bipartite graph $K_{t,(t-1)!+1}$, does not contain a copy of $K_{t+1,(t-1)!-1}$.

When *H* is a complete bipartite graph, determining the Turán number is related to the ''Zarankiewicz problem'' (see [\[3\]](#page--1-1), Chap. VI, Sect. 2, and [\[6\]](#page--1-2) for more details and references). In many cases even the question of determining the right order of magnitude for *ex*(*n*, *H*) is not known.

Let *Kt*,*^s* denote the complete bipartite graph with *t* vertices in one class and *s* vertices in the other. The probabilistic lower bound for *Kt*,*^s*

$$
ex(n, K_{t,s}) \geqslant cn^{2-(s+t-2)/(st-1)}
$$

is due to Erdős and Spencer [\[4\]](#page--1-3). Kővari, Sós and Turán [\[12\]](#page--1-4) proved that for $s \geq t$

$$
ex(n, K_{t,s}) \leqslant \frac{1}{2}(s-1)^{1/t}n^{2-1/t} + \frac{1}{2}(t-1)n. \tag{1.1}
$$

The norm graph $\Gamma(t)$, which we will define in the next section, has *n* vertices and about $\frac{1}{2}n^{2-1/t}$ edges. In [\[1\]](#page--1-5) (based on results from [\[11\]](#page--1-6)) it was proven that the graph $\Gamma(t)$ contains no copy of $K_{t,(t-1)!+1}$, thus proving that for $s \ge (t-1)!+1$,

$$
ex(n, K_{t,s}) > cn^{2-1/t}
$$

for some constant *c*.

In [\[2\]](#page--1-7), it was shown that Γ (4) contains no copy of *K*5,5, which improves on the probabilistic lower bound of Erdős and Spencer [\[4\]](#page--1-3) for $ex(n, K_{5,5})$. In this article, we will generalise this result and prove that $\Gamma(t)$ contains no copy of $K_{t+1,(t-1)!-1}$. For $t \geqslant 5$, this does not improve the probabilistic lower bound of Erdős and Spencer, but, as far as we are aware, it is however the deterministic construction of a graph with *n* vertices containing no *Kt*+1,(*t*−1)!−¹ with the most edges.

Corresponding author. *E-mail addresses:* simeon@ma4.upc.edu (S. Ball), valepepe@sbai.uniroma1.it (V. Pepe).

<http://dx.doi.org/10.1016/j.disc.2015.11.010> 0012-365X/© 2015 Elsevier B.V. All rights reserved.

© 2015 Elsevier B.V. All rights reserved.

2. The norm graph

Suppose that $q=p^h$, where p is a prime, and denote by \Bbb{F}_q the finite field with q elements. We will use the following properties of finite fields. For any $a,b\in\mathbb{F}_q,$ $(a+b)^{p^i}=a^{p^i}+b^{p^j},$ for any $i\in\mathbb{N}.$ For all $a\in\mathbb{F}_{q^i},$ $a^q=a$ if and only if $a\in\mathbb{F}_q.$ Finally $N(a) = a^{1+q+\cdots+q^{k-1}} \in \mathbb{F}_q$, for all $a \in \mathbb{F}_{q^k}$, since $N(a)^q = N(a)$.

Let F denote an arbitrary field. We denote by $\mathbb{P}_n(\mathbb{F})$ the projective space arising from the $(n + 1)$ -dimensional vector space over F. Throughout dim will refer to projective dimension. A point of $\mathbb{P}_n(\mathbb{F})$ (which is a one-dimensional subspace of the vector space) will often be written as $\langle u \rangle$, where *u* is a vector in the $(n + 1)$ -dimensional vector space over **F**.

Let $\Gamma(t)$ be the graph with vertices $(a, \alpha) \in \mathbb{F}_{q^{t-1}} \times \mathbb{F}_q$, $\alpha \neq 0$, where (a, α) is joined to (a', α') if and only if $N(a+a')=\alpha\alpha'.$ The graph $\varGamma(t)$ was constructed in [\[11\]](#page--1-6), where it was shown to contain no copy of $K_{t,t!+1}.$ In [\[1\]](#page--1-5) Alon, Rónyai and Szabó proved that $\Gamma(t)$ contains no copy of $K_{t,(t-1)!+1}$. Our aim here is to show that it also contains no $K_{t+1,(t-1)!-1}$, generalising the same result for $t = 5$ presented in [\[2\]](#page--1-7).

Let

$$
V = \{(1, a) \otimes (1, a^q) \otimes \cdots \otimes (1, a^{q^{t-2}}) \mid a \in \mathbb{F}_{q^{t-1}}\} \subset \mathbb{P}_{2^{t-1}-1}(\mathbb{F}_{q^{t-1}}).
$$

The set *V* is the affine part of an algebraic variety that is in turn a subvariety of the Segre variety

$$
\Sigma = \underbrace{\mathbb{P}_1 \times \mathbb{P}_1 \times \cdots \times \mathbb{P}_1}_{t-1 \text{ times}},
$$

where $\mathbb{P}_1 = \mathbb{P}_1(\mathbb{F}_q)$. We briefly recall that a Segre variety is the image of the Segre embedding:

$$
\sigma:(v_1,v_2,\ldots,v_k)\in\mathbb{P}_{n_1-1}\times\mathbb{P}_{n_2-1}\times\cdots\times\mathbb{P}_{n_k-1}\mapsto v_1\otimes v_2\otimes\cdots\otimes v_k\in\mathbb{P}_{n_1n_2\cdots n_k-1}
$$

i.e. it is the set of points corresponding to the simple tensors. For the reader that is not familiar to tensor products we remark that, up to a suitable choice of coordinates, if $v_i = (x_0^{(i)}, x_1^{(i)}, \ldots, x_{n_i-1}^i)$, then $v_1 \otimes v_2 \otimes \cdots \otimes v_k$ is the vector of all possible products of type: $x_{j_1}^{(1)}x_{j_2}^{(2)}\cdots x_{j_k}^{(k)}$ (see [\[10\]](#page--1-8) for an easy overview on Segre varieties over finite fields).

Then, the affine point $P_a = (1, a) \otimes (1, a^q) \otimes \cdots \otimes (1, a^{q^{t-2}})$ has coordinates indexed by the subsets of $T :=$ {0, 1, . . . , *t* − 1}, where the *S*-coordinate is

$$
\left(\prod_{i\in S}a^{q^i}\right),
$$

for any non-empty subset *S* of *T* and

$$
\prod_{i\in S}a^{q^i}=1
$$

when $S = \emptyset$ (see [\[13\]](#page--1-9)).

Let $n = 2^{t-1} - 1$.

We order the coordinates of P*n*(F*^q ^t*−¹) so that if the *i*th coordinate corresponds to the subset *S*, then the (*n*−*i*)th coordinate corresponds to the subset $T \setminus S$.

Embed the $\mathbb{P}_n(\mathbb{F}_{q^{t-1}})$ containing *V* as a hyperplane section of $\mathbb{P}_{n+1}(\mathbb{F}_{q^{t-1}})$ defined by the equation $x_{n+1}=0$. Let *^b* be the symmetric bilinear form on the (*ⁿ* + ²)-dimensional vector space over F*^q ^t*−¹ defined by

$$
b(u, v) = \sum_{i=0}^{n} u_i v_{n-i} - u_{n+1} v_{n+1}.
$$

Let \bot be defined in the usual way, so that given a subspace \varPi of $\mathbb{P}_{n+1}(\mathbb{F}_{q^{t-1}})$, \varPi^\bot is the subspace of $\mathbb{P}_{n+1}(\mathbb{F}_{q^{t-1}})$ defined by

$$
\Pi^{\perp} = \{v \mid b(u, v) = 0, \text{ for all } u \in \Pi\}.
$$

We wish to define the same graph $\Gamma(t)$, so that adjacency is given by the bilinear form. Let $P=(0,0,0,\ldots,1)$. Let Γ' be a graph with vertex set the set of points on the lines joining the affine points of *V* to *P* obtained using only scalars in F*q*, distinct from *P* and not contained in the hyperplane $x_{n+1}=0$. Join two vertices $\langle u \rangle$ and $\langle u' \rangle$ in Γ' if and only if $b(u, u')=0$. It is a simple matter to verify that the graph Γ' is isomorphic to the graph $\Gamma(t)$ by the map $P_a+\alpha P\mapsto (a,\alpha)$ since

$$
N(a+b)-\alpha\beta=\sum_{S\subseteq T}\prod_{i\in S,\ j\in T\setminus S}a^{q^i}b^{q^j}-\alpha\beta=b(u,v),
$$

where

$$
u=(1,a)\otimes(1,a^q)\otimes\cdots\otimes(1,a^{q^{t-2}})+\alpha P,
$$

Download English Version:

<https://daneshyari.com/en/article/4646858>

Download Persian Version:

<https://daneshyari.com/article/4646858>

[Daneshyari.com](https://daneshyari.com)