Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A cycle of length 5 with a *chordal*, i.e. an edge joining two non-adjacent vertices of the cycle, is called a graph H_5 or also an *House-graph*. In this paper, the spectrum of Housesystems nesting *C*₃-systems, *C*₄-systems, *C*₅-systems and together (*C*₃, *C*₄, *C*₅)-systems, of

all admissible indices are completely determined, without exceptions.

Nesting *House*-designs

Paola Bonacini, Mario Gionfriddo, Lucia Marino

Department of Mathematics and Computer Science, University of Catania, Italy

a r t i c l e i n f o

a b s t r a c t

Article history: Received 11 December 2014 Received in revised form 17 November 2015 Accepted 18 November 2015 Available online 17 December 2015

Keywords: Graphs *G*-decomposizione Nestings

1. Introduction

Let λK_v be the complete multigraph defined in a vertex-set *X*, $|X| = v$. Let *G* be a subgraph of λK_v . A *G*-*decomposition* of $λK_v$, of order v and index $λ$, is a pair $Σ = (X, ℑ)$, where *β* is a partition of the edge-set of $λK_v$ into subsets all of which yield subgraphs isomorphic to *G*. A *G*-*decomposition* of $λK_v$ is also called a *G*-design, of order v and index $λ$. The classes of the partition B are said *blocks*. Important and interesting results about *G*-designs can be found in [\[5](#page--1-0)[,10,](#page--1-1)[12](#page--1-2)[,13\]](#page--1-3).

A cycle of length 5 with a *chordal*, i.e. an edge joining two not adjacent vertices of the cycle, will be called an *House-graph* and will be denoted by H_5 . If $H_5 = (X, E)$, where $X = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}, \{a, c\}\}$, we will denote such a graph by [(*a*), *b*, (*c*), *d*, *e*].

Let $\Sigma = (X, \mathcal{B})$ be H_5 -design of order v and index λ or an H_5 -decomposition of the complete multigraph λK_v . When a graph $H_5 = [(a), b, (c), d, e]$ is a block of Σ with *multiplicity n*, it will be indicated by $[(a), b, (c), d, e]_{(n)}$. Similar concepts and symbolism are given in [\[3\]](#page--1-4).

We say that Σ is:

– (1) *^C*3-*perfect* if the family of all the *^C*3-cycles having edges {*a*, *^b*}, {*b*, *^c*}, {*a*, *^c*} generates a *^C*3-design Σ′ of order v and index μ ;

– (2) *^C*4-*perfect*, if the family of all the *^C*4-cycles having edges {*a*, *^c*}, {*c*, *^d*}, {*d*, *^e*}, {*e*, *^a*} generates a *^C*4-design Σ′ of order v and index σ ;

 $-(3)$ C₅-perfect, if the family of all the C₅-cycles having edges $\{a, b\}$, $\{b, c\}$, $\{c, d\}$ $\{d, e\}$, $\{e, a\}$ generates a C₅-design Σ' of order v and index τ .

In the case (1), we say that Σ has indices (λ , μ). Similarly, in (2) its indices are (λ , σ) and in (3)(λ , τ). Similar definitions and symbolism is given in [\[1,](#page--1-5)[2,](#page--1-6)[6\]](#page--1-7). For *perfect G*-designs see also [\[8,](#page--1-8)[11\]](#page--1-9).

In every case, we say that Σ' is a system *nested* into Σ , and also that Σ is nesting Σ' .

We say that an *H*₅-design Σ, which is *C_h*-*perfect*, with indices (λ, μ), and *C_k*-perfect with indices (λ, σ), for *h*, $k = 3, 4, 5$, has indices (λ, μ , σ), and we will say that it is a (C_{*h*}, C_{*k*})-perfect. Similarly, if Σ of index λ is C₃-perfect of index μ , C₄-perfect of index σ, and also C₅-perfect of index τ, we will say that Σ is (C₃, C₄, C₅)-perfect, of indices (λ, μ , σ, τ).

<http://dx.doi.org/10.1016/j.disc.2015.11.014> 0012-365X/© 2015 Elsevier B.V. All rights reserved.

© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: bonacini@dmi.unict.it (P. Bonacini), gionfriddo@dmi.unict.it (M. Gionfriddo), lmarino@dmi.unict.it (L. Marino).

It is known [\[4\]](#page--1-10) that:

Theorem 1.1. An H₅-design of order v exists if and only if $v \equiv 0$, or 1, or 4, or 9 (mod 12), $v \ge 9$, with the possible exception *of* $v = 24$ *.*

Further, the spectrum of House-designs nesting *C*4-systems, for every admissible indices, is determined in [\[3\]](#page--1-4), where the authors proved that:

Theorem 1.2. *There exists a C₄-perfect H₅-design of order* v and indices (3, 2) *if and only if* $v \equiv 0$ or 1 (mod 4), $v \ge 5$ *.*

Theorem 1.3. *There exists a C₄-perfect H₅-design of order v and indices* (6, 4) *if and only if* $v > 5$ *.*

Theorem 1.4. *There exists a C₄-perfect H₅-design of order v,* $v > 5$ *, and indices* (λ, u) *such that* $2\lambda = 3u$.

In this paper we study the all possible nestings in House-systems, determining completely the spectrum in all the possible cases.

In what follows, to construct House-systems, we will use often the *difference-method*. This means that we fix as vertex-set $X = Z_v$ and, defined a base-block $[(a), b, (c), d, e]$, its translates will be all the blocks of type $[(a+i), b+i, (c+i), d+i, e+i]$, for every $i \in \mathbb{Z}_v$. For a given v, it will be $D(v) = \{|x - y| : x, y \in \mathbb{Z}_v, x \neq y\}.$

2. C_3 -perfect H_5 -designs of index $(2, 1)$

In this section, the spectrum of *C*₃-perfect *H*₅-designs of index (2, 1) is completely determined. We begin with the necessary conditions.

Theorem 2.1. *If* $\Sigma = (X, \mathcal{B})$ *is a* C_3 -perfect H_5 -design of order v and indices (λ, μ) *, then:*

 $(1) \lambda = 2\mu;$

(2) |B| = $\mu \frac{v(v-1)}{6}$;

(3) for $\mu = 1$, it is $v \equiv 1, 3 \pmod{6}$.

Proof. Let $\Sigma = (X, B)$ be a C_3 -perfect H_5 -design of order v and indices (λ, μ) . If $\Sigma' = (X, B')$ is the C_3 -system nested in Σ , necessarily: $B = B'$. Since

 $|\mathcal{B}| = \lambda \frac{v(v-1)}{12}, |\mathcal{B}'| = \mu \frac{v(v-1)}{6},$

(1) and (2) follow easily. For (3), consider that \varSigma' is a Steiner triple system of index 1. $\quad \Box$

Now we determine the spectrum of C_3 -perfect H_5 -designs of index (2, 1), examining at first the case $v = 6h + 1$ and after the case $v = 6h + 3$.

Theorem 2.2. For $\lambda = 2$, $\mu = 1$ and for every $v \equiv 1 \pmod{6}$, $v > 7$, there exists a C₃-perfect H₅-design of order v and indices (2, 1)*.*

Proof. Let $v \equiv 1 \pmod{6}$, $v > 7$. We can consider the following cases:

(1) $v \equiv 7 \pmod{18}$;

 $(2) v \equiv 13$, (mod 18);

(3) $v \equiv 1 \pmod{18}$, $v > 19$.

(1) Let $v = 7$. It is: $D(7) = \{1, 2, 3\}$. Therefore, consider the block: $B = [(0), 3, (1), 4, 6]$. If $\mathcal B$ is the collection of all the translates of *B*, we can verify that $\Sigma = (\mathbb{Z}_7, \mathbb{B})$ is an *H*₅-design of order 7 and indices (2, 1). Further, since in *B* the differences {1, 2, 3} cover, exactly one time, the edges of the *C*3-cycle, it follows that Σ is *C*3-perfect.

Let $v = 18k + 7$, for $k \ge 1$. Since $D = \{1, 2, \ldots, 9k + 3\}$, it is possible to define the following $3k + 1$ base-blocks:

 $B_{1,h} = [(0), 8k + 2h + 4, (3h + 1), 3k + 2, 3h + 3]$, for $h \in \{0, ..., k - 1\}$;

- $B_{2,h} = [(0), 6k + h + 3, (3h + 2), 9k + 2, 3k + 3h + 2]$, for $h \in \{0, ..., k 1\}$;
- $B_{3,h} = [(0), 4k + 2h + 4, (3h + 3), 12k + 5, 6k + 3h + 4]$, for $h \in \{0, ..., k 1\}$;

 $B_4 = [(0), 7k + 3, (3k + 1), 9k + 3, 18k + 6].$

If $\mathcal B$ is the collection of all the translates of these base-blocks, we can verify that $\Sigma=(\mathbb Z_{18k+7},\mathcal B)$ is an H_5 -design having indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, . . . , 9*k* + 3 cover, exactly one time, the edges of the C_3 -cycles. Further, the number of base-blocks is $3k + 1$ and every of them generates $18k + 7$ translates. It follows that $|\mathcal{B}| = (3k + 1)(18k + 7)$ and Σ is C_3 -perfect.

(2) Let $v = 13$. It is: $D = \{1, 2, ..., 6\}$. Therefore, it is possible to define the two base-blocks: $B_1 = [(0), 4, (1), 7, 3], B_2 =$ [(0), 7, (2), 4, 5]. If B is the collection of all the translates of B_1 and B_2 , we can verify that $\Sigma = (\mathbb{Z}_{13}, \mathbb{B})$ is an H_5 -design having indices (2, 1). Further, since in B_1 and B_2 the differences {1, 3, 4} and {2, 5, 6} cover, exactly one time, respectively the edges of the two C_3 -cycles, it follows that Σ is C_3 -perfect.

Let $v = 18k + 13$, for $k \ge 1$. Since $D = \{1, 2, ..., 9k + 6\}$, it is possible to define the following $3k + 2$ base-blocks: $B_{1,h} = [(0), 4k + 2h + 4, (3h + 1), 3k + 2, 3h + 3]$, for $h \in \{0, ..., k - 1\}$; $B_{2,h} = [(0), 6k + h + 5, (3h + 2), 9k + 8, 3k + 3h + 5]$, for $h \in \{0, ..., k - 1\}$; $B_{3,h} = [(0), 8k + 2h + 8, (3h + 3), 12k + 8, 6k + 3h + 7]$, for $h \in \{0, \ldots, k-1\}$;

Download English Version:

<https://daneshyari.com/en/article/4646868>

Download Persian Version:

<https://daneshyari.com/article/4646868>

[Daneshyari.com](https://daneshyari.com)