Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A cycle of length 5 with a *chordal*, i.e. an edge joining two non-adjacent vertices of the

cycle, is called a graph H_5 or also an *House-graph*. In this paper, the spectrum of House-

systems nesting C_3 -systems, C_4 -systems, C_5 -systems and together (C_3 , C_4 , C_5)-systems, of

all admissible indices are completely determined, without exceptions.

Nesting *House*-designs

Paola Bonacini, Mario Gionfriddo, Lucia Marino

Department of Mathematics and Computer Science, University of Catania, Italy

ARTICLE INFO

ABSTRACT

Article history: Received 11 December 2014 Received in revised form 17 November 2015 Accepted 18 November 2015 Available online 17 December 2015

Keywords: Graphs G-decomposizione Nestings

1. Introduction

Let λK_v be the complete multigraph defined in a vertex-set X, |X| = v. Let G be a subgraph of λK_v . A G-decomposition of λK_v , of order v and index λ , is a pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge-set of λK_v into subsets all of which yield subgraphs isomorphic to G. A G-decomposition of λK_v is also called a G-design, of order v and index λ . The classes of the partition \mathcal{B} are said blocks. Important and interesting results about G-designs can be found in [5,10,12,13].

A cycle of length 5 with a *chordal*, i.e. an edge joining two not adjacent vertices of the cycle, will be called an *House-graph* and will be denoted by H_5 . If $H_5 = (X, E)$, where $X = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}, \{a, c\}\}$, we will denote such a graph by [(a), b, (c), d, e].

Let $\Sigma = (X, \mathcal{B})$ be H_5 -design of order v and index λ or an H_5 -decomposition of the complete multigraph λK_v . When a graph $H_5 = [(a), b, (c), d, e]$ is a block of Σ with *multiplicity n*, it will be indicated by $[(a), b, (c), d, e]_{(n)}$. Similar concepts and symbolism are given in [3].

We say that Σ is:

- (1) C_3 -perfect if the family of all the C_3 -cycles having edges $\{a, b\}$, $\{b, c\}$, $\{a, c\}$ generates a C_3 -design Σ' of order v and index μ ;

- (2) C_4 -perfect, if the family of all the C_4 -cycles having edges {a, c}, {c, d}, {d, e}, {e, a} generates a C_4 -design Σ' of order v and index σ ;

- (3) *C*₅-*perfect*, if the family of all the *C*₅-cycles having edges {*a*, *b*}, {*b*, *c*}, {*c*, *d*} {*d*, *e*}, {*e*, *a*} generates a *C*₅-design Σ' of order *v* and index τ .

In the case (1), we say that Σ has indices (λ , μ). Similarly, in (2) its indices are (λ , σ) and in (3) (λ , τ). Similar definitions and symbolism is given in [1,2,6]. For *perfect G*-designs see also [8,11].

In every case, we say that Σ' is a system *nested* into Σ , and also that Σ is nesting Σ' .

We say that an H_5 -design Σ , which is C_h -perfect, with indices (λ, μ) , and C_k -perfect with indices (λ, σ) , for h, k = 3, 4, 5, has indices (λ, μ, σ) , and we will say that it is a (C_h, C_k) -perfect. Similarly, if Σ of index λ is C_3 -perfect of index μ , C_4 -perfect of index σ , and also C_5 -perfect of index τ , we will say that Σ is (C_3, C_4, C_5) -perfect, of indices $(\lambda, \mu, \sigma, \tau)$.

http://dx.doi.org/10.1016/j.disc.2015.11.014 0012-365X/© 2015 Elsevier B.V. All rights reserved.

© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: bonacini@dmi.unict.it (P. Bonacini), gionfriddo@dmi.unict.it (M. Gionfriddo), lmarino@dmi.unict.it (L. Marino).

It is known [4] that:

Theorem 1.1. An H_5 -design of order v exists if and only if $v \equiv 0$, or 1, or 4, or 9 (mod 12), v > 9, with the possible exception of v = 24.

Further, the spectrum of House-designs nesting C_4 -systems, for every admissible indices, is determined in [3], where the authors proved that:

Theorem 1.2. There exists a C₄-perfect H₅-design of order v and indices (3, 2) if and only if $v \equiv 0$ or 1 (mod 4), $v \geq 5$.

Theorem 1.3. There exists a C_4 -perfect H_5 -design of order v and indices (6, 4) if and only if v > 5.

Theorem 1.4. There exists a C_4 -perfect H_5 -design of order v, v > 5, and indices (λ, μ) such that $2\lambda = 3\mu$.

In this paper we study the all possible nestings in House-systems, determining completely the spectrum in all the possible cases.

In what follows, to construct House-systems, we will use often the difference-method. This means that we fix as vertex-set $X = Z_v$ and, defined a base-block [(a), b, (c), d, e], its translates will be all the blocks of type [(a+i), b+i, (c+i), d+i, e+i], for every $i \in \mathbb{Z}_v$. For a given v, it will be $D(v) = \{|x - y| : x, y \in \mathbb{Z}_v, x \neq y\}$.

2. C_3 -perfect H_5 -designs of index (2, 1)

In this section, the spectrum of C_3 -perfect H_5 -designs of index (2, 1) is completely determined. We begin with the necessary conditions.

Theorem 2.1. If $\Sigma = (X, \mathcal{B})$ is a C_3 -perfect H_5 -design of order v and indices (λ, μ) , then:

(1) $\lambda = 2\mu$;

(2) $|\mathcal{B}| = \mu \frac{v(v-1)}{6};$

(3) for $\mu = 1$, it is $v \equiv 1, 3 \pmod{6}$.

Proof. Let $\Sigma = (X, B)$ be a C_3 -perfect H_5 -design of order v and indices (λ, μ) . If $\Sigma' = (X, B')$ is the C_3 -system nested in Σ , necessarily: $\mathcal{B} = \mathcal{B}'$. Since

 $|\mathcal{B}| = \lambda \frac{v(v-1)}{12}, |\mathcal{B}'| = \mu \frac{v(v-1)}{6}$

(1) and (2) follow easily. For (3), consider that Σ' is a Steiner triple system of index 1.

Now we determine the spectrum of C_3 -perfect H_5 -designs of index (2, 1), examining at first the case v = 6h + 1 and after the case v = 6h + 3.

Theorem 2.2. For $\lambda = 2$, $\mu = 1$ and for every $v \equiv 1 \pmod{6}$, v > 7, there exists a C₃-perfect H₅-design of order v and indices (2, 1).

Proof. Let $v \equiv 1 \pmod{6}$, v > 7. We can consider the following cases:

(1) $v \equiv 7 \pmod{18}$;

(2) $v \equiv 13$, (mod 18);

(3) $v \equiv 1 \pmod{18}, v > 19$.

(1) Let v = 7. It is: $D(7) = \{1, 2, 3\}$. Therefore, consider the block: B = [(0), 3, (1), 4, 6]. If \mathcal{B} is the collection of all the translates of *B*, we can verify that $\Sigma = (\mathbb{Z}_7, \mathcal{B})$ is an *H*₅-design of order 7 and indices (2, 1). Further, since in *B* the differences $\{1, 2, 3\}$ cover, exactly one time, the edges of the C₃-cycle, it follows that Σ is C₃-perfect.

Let v = 18k + 7, for $k \ge 1$. Since $D = \{1, 2, \dots, 9k + 3\}$, it is possible to define the following 3k + 1 base-blocks:

- $B_{1,h} = [(0), 8k + 2h + 4, (3h + 1), 3k + 2, 3h + 3], \text{ for } h \in \{0, \dots, k 1\}; \\B_{2,h} = [(0), 6k + h + 3, (3h + 2), 9k + 2, 3k + 3h + 2], \text{ for } h \in \{0, \dots, k 1\};$
- $B_{3,h} = [(0), 4k + 2h + 4, (3h + 3), 12k + 5, 6k + 3h + 4], \text{ for } h \in \{0, \dots, k-1\};$

 $B_4 = [(0), 7k + 3, (3k + 1), 9k + 3, 18k + 6].$

If \mathcal{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma = (\mathbb{Z}_{18k+7}, \mathcal{B})$ is an H_5 -design having indices (2, 1). Observe that, in the base-blocks, the differences $1, 2, \ldots, 9k + 3$ cover, exactly one time, the edges of the C_3 -cycles. Further, the number of base-blocks is 3k + 1 and every of them generates 18k + 7 translates. It follows that $|\mathcal{B}| = (3k+1)(18k+7)$ and Σ is C_3 -perfect.

(2) Let v = 13. It is: $D = \{1, 2, ..., 6\}$. Therefore, it is possible to define the two base-blocks: $B_1 = [(0), 4, (1), 7, 3], B_2 = (1, 2)$ [(0), 7, (2), 4, 5]. If \mathcal{B} is the collection of all the translates of B_1 and B_2 , we can verify that $\Sigma = (\mathbb{Z}_{13}, \mathcal{B})$ is an H_5 -design having indices (2, 1). Further, since in B_1 and B_2 the differences {1, 3, 4} and {2, 5, 6} cover, exactly one time, respectively the edges of the two C_3 -cycles, it follows that Σ is C_3 -perfect.

Let v = 18k + 13, for $k \ge 1$. Since $D = \{1, 2, \dots, 9k + 6\}$, it is possible to define the following 3k + 2 base-blocks: $B_{1,h} = [(0), 4k + 2h + 4, (3h + 1), 3k + 2, 3h + 3], \text{ for } h \in \{0, \dots, k - 1\};$ $B_{2,h} = [(0), 6k + h + 5, (3h + 2), 9k + 8, 3k + 3h + 5], \text{ for } h \in \{0, \dots, k-1\};$ $B_{3h} = [(0), 8k + 2h + 8, (3h + 3), 12k + 8, 6k + 3h + 7], \text{ for } h \in \{0, \dots, k-1\};$

1292

Download English Version:

https://daneshyari.com/en/article/4646868

Download Persian Version:

https://daneshyari.com/article/4646868

Daneshyari.com