Note

The difference and ratio of the fractional matching number and the matching number of graphs

Ilkyoo Choi ${ }^{\text {a }}$, Jaehoon Kim ${ }^{\text {b }}$, Suil O ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
${ }^{\mathrm{b}}$ School of Mathematics, University of Birmingham, Edgbaston, Birmingham, United Kingdom
${ }^{\text {c }}$ Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 2R7, Canada

ARTICLE INFO

Article history:

Received 8 April 2015
Accepted 5 December 2015
Available online 23 December 2015

Keywords:

Matching number
Fractional matching number

Abstract

Given a graph G, the matching number of G, written $\alpha^{\prime}(G)$, is the maximum size of a matching in G, and the fractional matching number of G, written $\alpha_{f}^{\prime}(G)$, is the maximum size of a fractional matching of G. In this paper, we prove that if G is an n-vertex connected graph that is neither K_{1} nor K_{3}, then $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G) \leq \frac{n-2}{6}$ and $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)} \leq \frac{3 n}{2 n+2}$. Both inequalities are sharp, and we characterize the infinite family of graphs where equalities hold.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For undefined terms, see [5]. Throughout this paper, n will always denote the number of vertices of a given graph. A matching in a graph is a set of pairwise disjoint edges. A perfect matching in a graph G is a matching in which each vertex has an incident edge in the matching; its size must be $n / 2$, where $n=|V(G)|$. A fractional matching of G is a function $\phi: E(G) \rightarrow[0,1]$ such that for each vertex $v, \sum_{e \in \Gamma(v)} \phi(e) \leq 1$, where $\Gamma(v)$ is the set of edges incident to v, and the size of a fractional matching ϕ is $\sum_{e \in E(G)} \phi(e)$. Given a graph G, the matching number of G, written $\alpha^{\prime}(G)$, is the maximum size of a matching in G, and the fractional matching number of G, written $\alpha_{f}^{\prime}(G)$, is the maximum size of a fractional matching of G.

Given a fractional matching ϕ, since $\sum_{e \in \Gamma(v)} \phi(e) \leq 1$ for each vertex v, we have that $2 \sum_{e \in E(G)} \phi(e) \leq n$, which implies $\alpha_{f}^{\prime}(G) \leq n / 2$. By viewing every matching as a fractional matching it follows that $\alpha_{f}^{\prime}(G) \geq \alpha^{\prime}(G)$ for every graph G, but equality need not hold. For example, the fractional matching number of a k-regular graph equals $n / 2$ by setting weight $1 / k$ on each edge, but the matching number of a k-regular graph can be much smaller than $n / 2$. Thus it is a natural question to find the largest difference between $\alpha_{f}^{\prime}(G)$ and $\alpha^{\prime}(G)$ in a (connected) graph.

In Sections 3 and 4, we prove tight upper bounds on $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G)$ and $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)}$, respectively, for an n-vertex connected graph G, and we characterize the infinite family of graphs achieving equality for both results. As corollaries of both results, we have upper bounds on both $\alpha_{f}^{\prime}(G)-\alpha^{\prime}(G)$ and $\frac{\alpha_{f}^{\prime}(G)}{\alpha^{\prime}(G)}$ for an n-vertex graph G, and we characterize the graphs achieving equality for both bounds.

Our proofs use the famous Berge-Tutte Formula [1] for the matching number as well as its fractional analogue. We also use the fact that there is a fractional matching ϕ for which $\sum_{e \in E(G)} \phi(e)=\alpha_{f}^{\prime}(G)$ such that $f(e) \in\{0,1 / 2,1\}$ for every edge e, and some refinements of the fact. We can prove both Theorems 6 and 8 with two different techniques, and for the sake of the readers we demonstrate each method in the proofs of Theorems 6 and 8.

[^0]
2. Tools

In this section, we introduce the tools we used to prove the main results. To prove Theorem 6, we use Theorems 1 and 2. For a graph H, let $o(H)$ denote the number of components of H with an odd number of vertices. Given a graph G and $S \subseteq V(G)$, define the deficiency $\operatorname{def}(S)$ by $\operatorname{def}(S)=o(G-S)-|S|$, and let $\operatorname{def}(G)=\max _{S \subseteq V(G)} \operatorname{def}(S)$. Theorem 1 is the famous Berge-Tutte formula, which is a general version of Tutte's 1-factor Theorem [4].

Theorem 1 ([1]). For any n-vertex graph $G, \alpha^{\prime}(G)=\frac{1}{2}(n-\operatorname{def}(G))$.
For the fractional analogue of the Berge-Tutte formula, let $i(H)$ denote the number of isolated vertices in H. Given a graph G and $S \subseteq V(G)$, let $\operatorname{def}_{f}(S)=i(G-S)-|S|$ and $\operatorname{def}_{f}(G)=\max _{S \subseteq V(G)} \operatorname{def}_{f}(S)$. Theorem 2 is the fractional version of the Berge-Tutte Formula. This is also the fractional analogue of Tutte's 1 -Factor Theorem saying that G has a fractional perfect matching if and only if $i(G-S) \leq|S|$ for all $S \subseteq V(G)$ (implicit in Pulleyblank [2]), where a fractional perfect matching is a fractional matching f such that $2 \sum_{e \in E(G)} f(e)=n$.

Theorem 2 ([3] See Theorem 2.2.6). For any n-vertex graph $G, \alpha_{f}^{\prime}(G)=\frac{1}{2}\left(n-\operatorname{def}_{f}(G)\right)$.
When we characterize the equalities in the bounds of Theorems 6 and 8, we need the following proposition. Recall that $G[S]$ is the graph induced by a subset of the vertex set S.

Proposition 3 ([3] See Proposition 2.2.2). The following are equivalent for a graph G.
(a) G has a fractional perfect matching.
(b) There is a partition $\left\{V_{1}, \ldots, V_{n}\right\}$ of the vertex set $V(G)$ such that, for each i, the graph $G\left[V_{i}\right]$ is either K_{2} or Hamiltonian.
(c) There is a partition $\left\{V_{1}, \ldots, V_{n}\right\}$ of the vertex set $V(G)$ such that, for each i, the graph $G\left[V_{i}\right]$ is either K_{2} or Hamiltonian graph on an odd number of vertices.

Theorem 4 and Observation 5 are used to prove Theorem 8.
Theorem 4 ([3] See Theorem 2.1.5). For any graph G, there is a fractional matching f for which

$$
\sum_{e \in E(G)} f(e)=\alpha_{f}^{\prime}(G)
$$

such that $f(e) \in\{0,1 / 2,1\}$ for every edge e.
Given a fractional matching f, an unweighted vertex v is a vertex with $\sum_{e \in \Gamma(v)} f(e)=0$, and a full vertex v is a vertex with $f(v w)=1$ for some vertex w. Note that w is also a full vertex. An i-edge e is an edge with $f(e)=i$. Note that the existence of an 1-edge guarantees the existence of two full vertices. A vertex subset S of a graph G is independent if $E(G[S])=\emptyset$, where $G[S]$ is the graph induced by S.

Observation 5. Among all the fractional matchings of an n-vertex graph G satisfying the conditions of Theorem 4, let f be a fractional matching with the greatest number of edges e with $f(e)=1$. Then we have the following:
(a) The graph induced by the $\frac{1}{2}$-edges is the union of odd cycles. Furthermore, if C and C^{\prime} are two disjoint cycles in the graph induced by $\frac{1}{2}$-edges, then there is no edge $u u^{\prime}$ such that $u \in V(C)$ and $u^{\prime} \in V\left(C^{\prime}\right)$.
(b) The set S of the unweighted vertices is independent. Furthermore, every unweighted vertex is adjacent only to a full vertex.
(c) $\alpha^{\prime}(G) \geq w_{1}+\sum_{i=1}^{\infty} i c_{i}, \alpha_{f}^{\prime}(G)=w_{1}+\sum_{i=1}^{\infty}\left(\frac{2 i+1}{2}\right) c_{i}$, and $n=w_{0}+2 w_{1}+\sum_{i=1}^{\infty}(2 i+1) c_{i}$, where w_{0}, w_{1}, and c_{i} are the number of unweighted vertices, the number of 1-edges, and the number of odd cycles of length $2 i+1$ in the graph induced by $\frac{1}{2}$-edges in G, respectively.
Proof. (a) The graph induced by the $\frac{1}{2}$-edges cannot have a vertex with degree at least 3 since $\sum_{e \in \Gamma(v)} f(e) \leq 1$ for each vertex v. Thus the graph must be a disjoint union of paths or cycles. If the graph contains a path or an even cycle, then by replacing weight $1 / 2$ on each edge on the path or the even cycle with weight 1 and 0 alternatively, we can have a fractional matching with the same fractional matching number and more edges with weight 1 , which contradicts the choice of f. Thus the graph induced by the $\frac{1}{2}$-edges is the union of odd cycles. If there is an edge $u v$ such that $u \in V(C)$ and $v \in V\left(C^{\prime}\right)$, where C and C^{\prime} are two different odd cycles induced by some $\frac{1}{2}$-edges, then $f(u v)=0$, since $\sum_{e \in \Gamma(x)} f(e) \leq 1$ for each vertex x. By replacing weights 0 and $1 / 2$ on the edge $u v$ and the edges on C and C^{\prime} with weight 1 on $u v$, and 0 and 1 on the edges in $E(C)$ and $E\left(C^{\prime}\right)$ alternatively, not violating the definition of a fractional matching, we have a fractional matching with the same fractional matching number with more edges with weight 1 , which is a contradiction. Thus we have the desired result.
(b) If two unweighted vertices u and v are adjacent, then we can put a positive weight on the edge $u v$, which contradicts the choice of f. If there exists an unweighted vertex x, which is not incident to any full vertex, then x must be adjacent to a vertex y such that $f\left(y y_{1}\right)=1 / 2$ and $f\left(y y_{2}\right)=1 / 2$ for some vertices y_{1} and y_{2}. By replacing the weights $0,1 / 2$, and $1 / 2$ on $x y, y y_{1}$, and $y y_{2}$ with $1,0,0$, respectively, we have a fractional matching with the same fractional matching number with more edges with weight 1 , which is a contradiction.
(c) By the definitions of w_{0}, w_{1}, and c_{i}, we have the desired result.

https://daneshyari.com/en/article/4646879

Download Persian Version:

https://daneshyari.com/article/4646879

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ilkyoo@kaist.ac.kr (I. Choi), kimJS@bham.ac.uk (J. Kim), suilo@gsu.edu (S. O).

