Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the type(s) of minimum size subspace partitions

O. Heden^{a,*}, J. Lehmann^b, E. Năstase^c, P. Sissokho^d

^a Department of Mathematics, KTH, S-100 44 Stockholm, Sweden

^b Department of Mathematics, Bremen University, Bibliothekstrasse 1 - MZH, 28359 Bremen, Germany

^c Department of Mathematics and Computer Science, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, United States

^d Mathematics Department, Illinois State University, Normal, IL 61790, United States

ARTICLE INFO

Article history: Received 17 July 2013 Received in revised form 30 March 2014 Accepted 19 May 2014 Available online 3 June 2014

Keywords: Vector space partitions

ABSTRACT

Let V = V(kt + r, q) be a vector space of dimension kt + r over the finite field with q elements. Let $\sigma_q(kt + r, t)$ denote the minimum size of a subspace partition \mathcal{P} of V in which t is the largest dimension of a subspace. We denote by n_{d_i} the number of subspaces of dimension d_i that occur in \mathcal{P} and we say $[d_1^{n_{d_1}}, \ldots, d_n^{n_{d_m}}]$ is the type of \mathcal{P} . In this paper, we show that a partition of minimum size has a unique partition type if t + r is an even integer. We also consider the case when t + r is an odd integer, but only give partial results since this case is indeed more intricate.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let V = V(n, q) denote a vector space of dimension n = kt + r over the finite field with q elements. A subspace partition \mathcal{P} of V, also known as a vector space partition, is a collection of non-zero subspaces of V such that each point, that is, 1-dimensional subspace, of V is in exactly one subspace of \mathcal{P} . We denote by n_{d_i} the number of subspaces of dimension d_i that occur in \mathcal{P} and we say $[d_1^{n_{d_1}}, \ldots, d_m^{n_{d_m}}]$ is the type of \mathcal{P} , where $d_1 < \cdots < d_m$ and $n_i > 0$ for $1 \le i \le m$. The size of a subspace partition \mathcal{P} is the number of subspaces in \mathcal{P} . Let $\sigma_q(n, t)$ denote the minimum size of a subspace partition of V in which the largest subspace has dimension t. We call such a subspace partition a t-minimal partition of V.

Generalizing a theorem in [8], the following theorem was proved by the authors of the present paper in [4].

Theorem 1. Let n, k, t, and r be integers such that $1 \le r < t, k \ge 1$, and n = kt + r. Then

$$\sigma_a(n,t) = q^t + 1$$
 for $n < 2t$,

and

$$\sigma_q(n,t) = q^{t+r} \sum_{i=0}^{k-2} q^{it} + q^{\left\lceil \frac{t+r}{2} \right\rceil} + 1 \quad \text{for } n \ge 2t.$$

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2014.05.015 0012-365X/© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: olohed@math.kth.se (O. Heden), jlehmann@math.uni-bremen.de (J. Lehmann), nastasee@xavier.edu (E. Năstase), psissok@ilstu.edu (P. Sissokho).

The question studied here is whether or not a subspace partition of minimum size, that is, attaining the lower bound given in Theorem 1, is of a type which just depends on n and t. We found that this is true when t + r is an even integer. The case when t + r is odd turned out to be more intricate and we obtain just partial answers in this case.

Let $\ell = q^r \sum_{i=0}^{k-2} q^{it}$. Our main results are thus the following theorems:

Theorem 2. Let n, k, t, and r be integers such that $1 \le r < t, k \ge 2, t + r = 2s$ for some integer s, and n = kt + r. Let \mathcal{P} be a t-minimal subspace partition of V(n, q). Then \mathcal{P} has type $[s^{n_s}, t^{n_t}]$, where

 $n_s = q^s + 1$, and $n_t = \ell q^t$.

Theorem 3. Let n, k, t, and r be integers such that $r = t - 1, k \ge 2$, and n = kt + r. Let \mathcal{P} be a *t*-minimal subspace partition of V(n, q). If \mathcal{P} consists of spaces of two different dimensions, then \mathcal{P} has type $[(t - 1)^{n_{t-1}}, t^{n_t}]$, where

 $n_{t-1} = q^t$, and $n_t = \ell q^t + 1$.

When r < t - 1 we obtain the following result:

Theorem 4. Let n, k, t, and r be integers such that $1 \le r < t - 1, k \ge 2, n = kt + r$, and t + r = 2s - 1 for some integer s. Let \mathcal{P} be a *t*-minimal subspace partition of V(n, q). If the number of subspaces of dimension t is $n_t = \ell q^t$, then \mathcal{P} has type $[(s-1)^{n_{s-1}}, s^1, t^{n_t}]$, where

 $n_{s-1} = q^s$, and $n_t = \ell q^t$.

It must be remarked that subspace partitions of types as indicated in the three previous theorems indeed exist and are well known, see Section 2.1 for a construction of them.

When t + r is odd and $n_t < \ell q^t$, we were able to derive only two new non-trivial necessary conditions:

Theorem 5. Let n, k, t, and r be integers such that $1 \le r < t - 1, k \ge 2$, and t + r = 2s - 1 for some integer s. Let \mathcal{P} be a t-minimal subspace partition of V(n, q).

(1) If
$$\mathcal{P}$$
 has type $[a^{n_a}, t^{n_t}]$, then $a = s = t - 1$, i.e., $r = t - 3$,

$$n_a = q^{t-1} + q^{t-2} + 1$$
, and $n_t = \ell q^t - q^{t-2}$

(2) If \mathcal{P} has type $[a^{n_a}, b^{n_b}, t^{n_t}]$, then a = s - 1, b = s,

$$n_a = q^s - \delta q \frac{q^{t-s} - 1}{q-1}, \quad n_b = \delta \frac{q^{t-s+1} - 1}{q-1} + 1, \quad and \quad n_t = \ell q^t - \delta$$

for some integer δ such that

$$0 \le \delta \le rac{(q^{s-2}-1)(q-1)}{q^{t-s}-1}.$$

In search for a reasonable conjecture when t + r is odd, and also for the sake of exploring new methods, we first did a computer search in the particular case when q = 2, t = 5, k = 2 and r = 2, by using the Simplex Algorithm on the known necessary linear constraints for existence of subspace partitions. These linear constraints were found by Lehmann and Heden in [7]. This search showed that in these cases the type of a minimum size subspace partition is unique. This experience led us to the following conjecture:

Conjecture 1. Let n, k, t, and r be integers such that $1 \le r < t - 1, k \ge 2$, and t + r = 2s - 1 for some integer s. Every t-minimal subspace partition \mathcal{P} of V(n, q) is of type

$$[(t-1)^{q^{t-1}+q^{t-2}+1}, t^{\ell q^t-q^{t-2}}]$$
 or $[(s-1)^{q^s}, s^1, t^{\ell q^t}].$

As we found the linear programming approach fruitful, we tried to use it in the more general situation, when t > 3, r = t - 3, and q is any prime power. Unfortunately, this led to rather complicated expressions that were tedious to evaluate. However, by using that approach we were able to prove Conjecture 1 for the special case when k = 2. The details of that proof might be published elsewhere.

2. Some preliminary results

2.1. The ideal partition

The following lemma due to Herzog and Schönheim [6] and independently Beutelspacher [1] and Bu [2], ensures the existence of a *t*-minimal subspace partition \mathcal{P}_0 of *V* for any $t \ge 2$.

Download English Version:

https://daneshyari.com/en/article/4646888

Download Persian Version:

https://daneshyari.com/article/4646888

Daneshyari.com